test_imperative.py 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15
import contextlib
16 17 18 19 20
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
21 22 23 24 25 26 27 28 29 30 31
from paddle.fluid.layers.nn import FC


@contextlib.contextmanager
def new_program_scope():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            yield
32 33 34 35 36 37 38 39 40 41 42 43


class MyLayer(fluid.imperative.PyLayer):
    def __init__(self):
        super(MyLayer, self).__init__()

    def forward(self, inputs):
        x = fluid.layers.relu(inputs[0])
        self._x_for_debug = x
        return [fluid.layers.elementwise_mul(x, x)]


M
minqiyang 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
class MLP(fluid.imperative.PyLayer):
    def __init__(self):
        super(MLP, self).__init__()
        self._fc1 = FC(3,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))
        self._fc2 = FC(4,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))

    def forward(self, inputs):
        x = self._fc1(inputs[0])
        x = self._fc2(x)
        x = fluid.layers.reduce_sum(x)
        return x


61 62 63 64 65 66 67 68 69
class TestImperative(unittest.TestCase):
    def test_layer(self):
        with fluid.imperative.guard():
            cl = core.Layer()
            cl.forward([])
            l = fluid.imperative.PyLayer()
            l.forward([])

    def test_layer_in_out(self):
M
minqiyang 已提交
70
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
71 72
        with fluid.imperative.guard():
            l = MyLayer()
M
minqiyang 已提交
73
            x = l(np_inp)[0]
74
            self.assertIsNotNone(x)
M
minqiyang 已提交
75
            dy_out = x._numpy()
76
            x._backward()
M
minqiyang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
            dy_grad = l._x_for_debug._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
            l = MyLayer()
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        with fluid.imperative.guard():
            mlp = MLP()
            out = mlp(np_inp)
            dy_out = out._numpy()
            out._backward()
            dy_grad = mlp._fc1._w._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            mlp = MLP()
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
                out, parameter_list=[mlp._fc1._w.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
120 121 122 123


if __name__ == '__main__':
    unittest.main()