keypoint_postprocess.cpp 10.3 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
//   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "keypoint_postprocess.h"
#define PI 3.1415926535
#define HALF_CIRCLE_DEGREE 180

cv::Point2f get_3rd_point(cv::Point2f& a, cv::Point2f& b) {
  cv::Point2f direct{a.x - b.x, a.y - b.y};
  return cv::Point2f(a.x - direct.y, a.y + direct.x);
}

std::vector<float> get_dir(float src_point_x,
                           float src_point_y,
                           float rot_rad) {
  float sn = sin(rot_rad);
  float cs = cos(rot_rad);
  std::vector<float> src_result{0.0, 0.0};
  src_result[0] = src_point_x * cs - src_point_y * sn;
  src_result[1] = src_point_x * sn + src_point_y * cs;
  return src_result;
}

void affine_tranform(
    float pt_x, float pt_y, cv::Mat& trans, std::vector<float>& preds, int p) {
  double new1[3] = {pt_x, pt_y, 1.0};
  cv::Mat new_pt(3, 1, trans.type(), new1);
  cv::Mat w = trans * new_pt;
  preds[p * 3 + 1] = static_cast<float>(w.at<double>(0, 0));
  preds[p * 3 + 2] = static_cast<float>(w.at<double>(1, 0));
}

void get_affine_transform(std::vector<float>& center,
                          std::vector<float>& scale,
                          float rot,
                          std::vector<int>& output_size,
                          cv::Mat& trans,
                          int inv) {
  float src_w = scale[0];
  float dst_w = static_cast<float>(output_size[0]);
  float dst_h = static_cast<float>(output_size[1]);
  float rot_rad = rot * PI / HALF_CIRCLE_DEGREE;
  std::vector<float> src_dir = get_dir(-0.5 * src_w, 0, rot_rad);
  std::vector<float> dst_dir{static_cast<float>(-0.5) * dst_w, 0.0};
  cv::Point2f srcPoint2f[3], dstPoint2f[3];
  srcPoint2f[0] = cv::Point2f(center[0], center[1]);
  srcPoint2f[1] = cv::Point2f(center[0] + src_dir[0], center[1] + src_dir[1]);
  srcPoint2f[2] = get_3rd_point(srcPoint2f[0], srcPoint2f[1]);

  dstPoint2f[0] = cv::Point2f(dst_w * 0.5, dst_h * 0.5);
  dstPoint2f[1] =
      cv::Point2f(dst_w * 0.5 + dst_dir[0], dst_h * 0.5 + dst_dir[1]);
  dstPoint2f[2] = get_3rd_point(dstPoint2f[0], dstPoint2f[1]);
  if (inv == 0) {
    trans = cv::getAffineTransform(srcPoint2f, dstPoint2f);
  } else {
    trans = cv::getAffineTransform(dstPoint2f, srcPoint2f);
  }
}

void transform_preds(std::vector<float>& coords,
                     std::vector<float>& center,
                     std::vector<float>& scale,
                     std::vector<int>& output_size,
                     std::vector<uint64_t>& dim,
Z
zhiboniu 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
                     std::vector<float>& target_coords,
                     bool affine=false) {
  if (affine) {
    cv::Mat trans(2, 3, CV_64FC1);
    get_affine_transform(center, scale, 0, output_size, trans, 1);
    for (int p = 0; p < dim[1]; ++p) {
      affine_tranform(
          coords[p * 2], coords[p * 2 + 1], trans, target_coords, p);
    }
  } else {
    float heat_w = static_cast<float>(output_size[0]);
    float heat_h = static_cast<float>(output_size[1]);
    float x_scale = scale[0] / heat_w;
    float y_scale = scale[1] / heat_h;
    float offset_x = center[0] - scale[0] / 2.;
    float offset_y = center[1] - scale[1] / 2.;
    for (int i = 0; i < dim[1]; i++) {
      target_coords[i * 3 + 1] = x_scale * coords[i * 2] + offset_x;
      target_coords[i * 3 + 2] = y_scale * coords[i * 2 + 1] + offset_y;
    }
Z
zhiboniu 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
  }
}

// only for batchsize == 1
void get_max_preds(std::vector<float>& heatmap,
                   std::vector<int>& dim,
                   std::vector<float>& preds,
                   std::vector<float>& maxvals,
                   int batchid,
                   int joint_idx) {
  int num_joints = dim[1];
  int width = dim[3];
  std::vector<int> idx;
  idx.resize(num_joints * 2);

  for (int j = 0; j < dim[1]; j++) {
    float* index = &(
        heatmap[batchid * num_joints * dim[2] * dim[3] + j * dim[2] * dim[3]]);
    float* end = index + dim[2] * dim[3];
    float* max_dis = std::max_element(index, end);
    auto max_id = std::distance(index, max_dis);
    maxvals[j] = *max_dis;
    if (*max_dis > 0) {
      preds[j * 2] = static_cast<float>(max_id % width);
      preds[j * 2 + 1] = static_cast<float>(max_id / width);
    }
  }
}

void dark_parse(std::vector<float>& heatmap,
                std::vector<uint64_t>& dim,
                std::vector<float>& coords,
                int px,
                int py,
                int index,
                int ch) {
  /*DARK postpocessing, Zhang et al. Distribution-Aware Coordinate
  Representation for Human Pose Estimation (CVPR 2020).
  1) offset = - hassian.inv() * derivative
  2) dx = (heatmap[x+1] - heatmap[x-1])/2.
  3) dxx = (dx[x+1] - dx[x-1])/2.
  4) derivative = Mat([dx, dy])
  5) hassian = Mat([[dxx, dxy], [dxy, dyy]])
  */
  std::vector<float>::const_iterator first1 = heatmap.begin() + index;
  std::vector<float>::const_iterator last1 =
      heatmap.begin() + index + dim[2] * dim[3];
  std::vector<float> heatmap_ch(first1, last1);
  cv::Mat heatmap_mat = cv::Mat(heatmap_ch).reshape(0, dim[2]);
  heatmap_mat.convertTo(heatmap_mat, CV_32FC1);
  cv::GaussianBlur(heatmap_mat, heatmap_mat, cv::Size(3, 3), 0, 0);
  heatmap_mat = heatmap_mat.reshape(1, 1);
  heatmap_ch = std::vector<float>(heatmap_mat.reshape(1, 1));

  float epsilon = 1e-10;
  // sample heatmap to get values in around target location
  float xy = log(fmax(heatmap_ch[py * dim[3] + px], epsilon));
  float xr = log(fmax(heatmap_ch[py * dim[3] + px + 1], epsilon));
  float xl = log(fmax(heatmap_ch[py * dim[3] + px - 1], epsilon));

  float xr2 = log(fmax(heatmap_ch[py * dim[3] + px + 2], epsilon));
  float xl2 = log(fmax(heatmap_ch[py * dim[3] + px - 2], epsilon));
  float yu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px], epsilon));
  float yd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px], epsilon));
  float yu2 = log(fmax(heatmap_ch[(py + 2) * dim[3] + px], epsilon));
  float yd2 = log(fmax(heatmap_ch[(py - 2) * dim[3] + px], epsilon));
  float xryu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px + 1], epsilon));
  float xryd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px + 1], epsilon));
  float xlyu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px - 1], epsilon));
  float xlyd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px - 1], epsilon));

  // compute dx/dy and dxx/dyy with sampled values
  float dx = 0.5 * (xr - xl);
  float dy = 0.5 * (yu - yd);
  float dxx = 0.25 * (xr2 - 2 * xy + xl2);
  float dxy = 0.25 * (xryu - xryd - xlyu + xlyd);
  float dyy = 0.25 * (yu2 - 2 * xy + yd2);

  // finally get offset by derivative and hassian, which combined by dx/dy and
  // dxx/dyy
  if (dxx * dyy - dxy * dxy != 0) {
    float M[2][2] = {dxx, dxy, dxy, dyy};
    float D[2] = {dx, dy};
    cv::Mat hassian(2, 2, CV_32F, M);
    cv::Mat derivative(2, 1, CV_32F, D);
    cv::Mat offset = -hassian.inv() * derivative;
    coords[ch * 2] += offset.at<float>(0, 0);
    coords[ch * 2 + 1] += offset.at<float>(1, 0);
  }
}

void get_final_preds(std::vector<float>& heatmap,
                     std::vector<uint64_t>& dim,
Z
zhiboniu 已提交
190
                     std::vector<float>& idxout,
Z
zhiboniu 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204
                     std::vector<uint64_t>& idxdim,
                     std::vector<float>& center,
                     std::vector<float> scale,
                     std::vector<float>& preds,
                     int batchid,
                     bool DARK) {
  std::vector<float> coords;
  coords.resize(dim[1] * 2);
  int heatmap_height = dim[2];
  int heatmap_width = dim[3];

  for (int j = 0; j < dim[1]; ++j) {
    int index = (batchid * dim[1] + j) * dim[2] * dim[3];

Z
zhiboniu 已提交
205
    int idx = int(idxout[batchid * dim[1] + j]);
Z
zhiboniu 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    preds[j * 3] = heatmap[index + idx];
    coords[j * 2] = idx % heatmap_width;
    coords[j * 2 + 1] = idx / heatmap_width;

    int px = int(coords[j * 2] + 0.5);
    int py = int(coords[j * 2 + 1] + 0.5);

    if (DARK && px > 1 && px < heatmap_width - 2 && py > 1 &&
        py < heatmap_height - 2) {
      dark_parse(heatmap, dim, coords, px, py, index, j);
    } else {
      if (px > 0 && px < heatmap_width - 1) {
        float diff_x = heatmap[index + py * dim[3] + px + 1] -
                       heatmap[index + py * dim[3] + px - 1];
        coords[j * 2] += diff_x > 0 ? 1 : -1 * 0.25;
      }
      if (py > 0 && py < heatmap_height - 1) {
        float diff_y = heatmap[index + (py + 1) * dim[3] + px] -
                       heatmap[index + (py - 1) * dim[3] + px];
        coords[j * 2 + 1] += diff_y > 0 ? 1 : -1 * 0.25;
      }
    }
  }

  std::vector<int> img_size{heatmap_width, heatmap_height};
  transform_preds(coords, center, scale, img_size, dim, preds);
}

void CropImg(cv::Mat& img,
             cv::Mat& crop_img,
             std::vector<int>& area,
             std::vector<float>& center,
             std::vector<float>& scale,
             float expandratio) {
  int crop_x1 = std::max(0, area[0]);
  int crop_y1 = std::max(0, area[1]);
  int crop_x2 = std::min(img.cols - 1, area[2]);
  int crop_y2 = std::min(img.rows - 1, area[3]);

  int center_x = (crop_x1 + crop_x2) / 2.;
  int center_y = (crop_y1 + crop_y2) / 2.;
  int half_h = (crop_y2 - crop_y1) / 2.;
  int half_w = (crop_x2 - crop_x1) / 2.;

  if (half_h * 3 > half_w * 4) {
    half_w = static_cast<int>(half_h * 0.75);
  } else {
    half_h = static_cast<int>(half_w * 4 / 3);
  }

  crop_x1 =
      std::max(0, center_x - static_cast<int>(half_w * (1 + expandratio)));
  crop_y1 =
      std::max(0, center_y - static_cast<int>(half_h * (1 + expandratio)));
  crop_x2 = std::min(img.cols - 1,
                     static_cast<int>(center_x + half_w * (1 + expandratio)));
  crop_y2 = std::min(img.rows - 1,
                     static_cast<int>(center_y + half_h * (1 + expandratio)));
  crop_img =
      img(cv::Range(crop_y1, crop_y2 + 1), cv::Range(crop_x1, crop_x2 + 1));

  center.clear();
  center.emplace_back((crop_x1 + crop_x2) / 2);
  center.emplace_back((crop_y1 + crop_y2) / 2);
  scale.clear();
  scale.emplace_back((crop_x2 - crop_x1));
  scale.emplace_back((crop_y2 - crop_y1));
}