data_feeder.py 6.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15 16 17
from __future__ import print_function
import core
import numpy
C
chengduoZH 已提交
18
import os
Y
Yu Yang 已提交
19
import six.moves as six
Y
yuyang18 已提交
20
import multiprocessing
Y
Yu Yang 已提交
21

F
fengjiayi 已提交
22
from framework import Variable, default_main_program
Y
Yu Yang 已提交
23 24 25 26 27 28 29 30 31

__all__ = ['DataFeeder']


class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
32 33 34 35 36 37 38 39
        self.dynamic_shape = False
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
40
        if dtype == core.VarDesc.VarType.FP32:
Y
Yu Yang 已提交
41
            self.dtype = 'float32'
42
        elif dtype == core.VarDesc.VarType.INT64:
Y
Yu Yang 已提交
43
            self.dtype = 'int64'
44
        elif dtype == core.VarDesc.VarType.FP64:
Y
Yu Yang 已提交
45
            self.dtype = 'float64'
46
        elif dtype == core.VarDesc.VarType.INT32:
Y
Yu Yang 已提交
47
            self.dtype = 'int32'
F
fengjiayi 已提交
48 49
        elif dtype == core.VarDesc.VarType.UINT8:
            self.dtype = 'uint8'
Y
Yu Yang 已提交
50 51
        else:
            raise ValueError("dtype must be any of [int32, float32, int64, "
F
fengjiayi 已提交
52
                             "float64, uint8]")
Y
Yu Yang 已提交
53 54 55 56 57

        self.data = []
        self.lod = []

        for i in six.range(lod_level):
58
            self.lod.append([])
Y
Yu Yang 已提交
59 60 61 62 63 64 65 66

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
67
            lod[0].append(len(data))
Y
Yu Yang 已提交
68
            for each_data in data:
K
Kexin Zhao 已提交
69
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
70 71

    def done(self):
72 73 74
        arr = numpy.array(self.data, dtype=self.dtype)
        if self.shape:
            arr = arr.reshape(self.shape)
Y
Yu Yang 已提交
75 76 77
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
78
            t.set_recursive_sequence_lengths(self.lod)
Y
Yu Yang 已提交
79 80 81 82
        return t


class DataFeeder(object):
F
fengjiayi 已提交
83
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
84 85 86 87
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
88 89
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
90
        for each_var in feed_list:
F
fengjiayi 已提交
91 92
            if isinstance(each_var, basestring):
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            shape = each_var.shape
            batch_size_dim = -1
            for i, s in enumerate(shape):
                if s < 0:
                    batch_size_dim = i
                    break
            if batch_size_dim == -1:
                raise ValueError("Variable {0} must has a batch size dimension",
                                 each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
            self.feed_shapes.append(shape)

        self.place = place

    def feed(self, iterable):
        converter = []
        for lod_level, shape, dtype in six.zip(
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
123 124 125
            assert len(each_sample) == len(converter), (
                "The number of fields in data (%s) does not match " +
                "len(feed_list) (%s)") % (len(each_sample), len(converter))
Y
Yu Yang 已提交
126 127 128 129 130 131
            for each_converter, each_slot in six.zip(converter, each_sample):
                each_converter.feed(each_slot)
        ret_dict = {}
        for each_name, each_converter in six.zip(self.feed_names, converter):
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

    def feed_parallel(self, iterable, num_places=None):
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
                for i in six.xrange(self._get_number_of_places_(num_places))
            ]
        else:
            places = [
                core.CPUPlace()
                for _ in six.xrange(self._get_number_of_places_(num_places))
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
        for p, batch in six.zip(places, iterable):
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
            return core.get_cuda_device_count()
        else:
C
chengduoZH 已提交
163 164 165
            cpu_num = int(
                os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            return cpu_num
Y
yuyang18 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__