analysis_predictor_tester.cc 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <gtest/gtest.h>
18
#include <thread>  // NOLINT
Y
Yan Chunwei 已提交
19
#include "paddle/fluid/framework/ir/pass.h"
20
#include "paddle/fluid/inference/api/helper.h"
21
#include "paddle/fluid/inference/api/paddle_inference_api.h"
Y
Yan Chunwei 已提交
22
#include "paddle/fluid/inference/tests/api/tester_helper.h"
23 24 25 26 27

DEFINE_string(dirname, "", "dirname to tests.");

namespace paddle {

28
TEST(AnalysisPredictor, analysis_off) {
29 30 31
  AnalysisConfig config;
  config.SetModel(FLAGS_dirname);
  config.SwitchIrOptim(false);
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

  auto _predictor = CreatePaddlePredictor<AnalysisConfig>(config);
  auto* predictor = static_cast<AnalysisPredictor*>(_predictor.get());

  // Without analysis, the scope_ and sub_scope_ are created by predictor
  // itself.
  ASSERT_TRUE(predictor->scope_);
  ASSERT_TRUE(predictor->sub_scope_);
  ASSERT_EQ(predictor->scope_->parent(), nullptr);
  ASSERT_EQ(predictor->sub_scope_->parent(), predictor->scope_.get());
  // ir is turned off, so program shouldn't be optimized.
  ASSERT_FALSE(predictor->status_program_optimized_);
  LOG(INFO) << "scope parameters " << predictor->scope_->LocalVarNames().size();

  // 2. Dummy Input Data
  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data.Reset(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  std::vector<PaddleTensor> inputs(4, tensor);
  std::vector<PaddleTensor> outputs;
  ASSERT_TRUE(predictor->Run(inputs, &outputs));
}

TEST(AnalysisPredictor, analysis_on) {
59 60 61
  AnalysisConfig config;
  config.SetModel(FLAGS_dirname);
  config.SwitchIrOptim(true);
62
#ifdef PADDLE_WITH_CUDA
63
  config.EnableUseGpu(100, 0);
64
#else
65
  config.DisableGpu();
66
#endif
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

  auto _predictor = CreatePaddlePredictor<AnalysisConfig>(config);
  auto* predictor = static_cast<AnalysisPredictor*>(_predictor.get());

  ASSERT_TRUE(predictor->scope_);
  ASSERT_TRUE(predictor->sub_scope_);
  ASSERT_EQ(predictor->scope_->parent(), nullptr);
  ASSERT_EQ(predictor->sub_scope_->parent(), predictor->scope_.get());
  // ir is turned on, so program should be optimized.
  ASSERT_TRUE(predictor->status_program_optimized_);
  // 2. Dummy Input Data
  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data.Reset(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  std::vector<PaddleTensor> inputs(4, tensor);
  std::vector<PaddleTensor> outputs;
  ASSERT_TRUE(predictor->Run(inputs, &outputs));

  for (auto& output : outputs) {
    LOG(INFO) << inference::DescribeTensor(output);
  }

  // compare with NativePredictor
93 94
  auto naive_predictor =
      CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
95 96 97 98 99 100
  std::vector<PaddleTensor> naive_outputs;
  ASSERT_TRUE(naive_predictor->Run(inputs, &naive_outputs));
  ASSERT_EQ(naive_outputs.size(), 1UL);
  inference::CompareTensor(outputs.front(), naive_outputs.front());
}

101 102
TEST(AnalysisPredictor, ZeroCopy) {
  AnalysisConfig config;
103 104
  config.SetModel(FLAGS_dirname);
  config.SwitchUseFeedFetchOps(false);
S
superjomn 已提交
105
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

  auto w0 = predictor->GetInputTensor("firstw");
  auto w1 = predictor->GetInputTensor("secondw");
  auto w2 = predictor->GetInputTensor("thirdw");
  auto w3 = predictor->GetInputTensor("forthw");

  w0->Reshape({4, 1});
  w1->Reshape({4, 1});
  w2->Reshape({4, 1});
  w3->Reshape({4, 1});

  auto* w0_data = w0->mutable_data<int64_t>(PaddlePlace::kCPU);
  auto* w1_data = w1->mutable_data<int64_t>(PaddlePlace::kCPU);
  auto* w2_data = w2->mutable_data<int64_t>(PaddlePlace::kCPU);
  auto* w3_data = w3->mutable_data<int64_t>(PaddlePlace::kCPU);

  for (int i = 0; i < 4; i++) {
    w0_data[i] = i;
    w1_data[i] = i;
    w2_data[i] = i;
    w3_data[i] = i;
  }

  predictor->ZeroCopyRun();

  auto out = predictor->GetOutputTensor("fc_1.tmp_2");
  PaddlePlace place;
  int size = 0;
  auto* out_data = out->data<float>(&place, &size);
  LOG(INFO) << "output size: " << size / sizeof(float);
  LOG(INFO) << "output_data: " << out_data;
}

139 140
TEST(AnalysisPredictor, Clone) {
  AnalysisConfig config;
141 142 143
  config.SetModel(FLAGS_dirname);
  config.SwitchUseFeedFetchOps(true);
  config.SwitchIrOptim(true);
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreatePaddlePredictor(config));

  LOG(INFO) << "************** to clone ************************";
  const int num_threads = 3;
  for (int i = 1; i < num_threads; i++) {
    predictors.emplace_back(predictors.front()->Clone());
  }

  auto* root_scope =
      static_cast<AnalysisPredictor*>(predictors[0].get())->scope();
  ASSERT_FALSE(root_scope->kids().empty());
  LOG(INFO) << "***** scope ******\n"
            << framework::GenScopeTreeDebugInfo(root_scope);

  // 2. Dummy Input Data
  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data.Reset(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  std::vector<PaddleTensor> inputs(4, tensor);
  std::vector<PaddleTensor> outputs;
  predictors[0]->Run(inputs, &outputs);

  LOG(INFO) << "Run with single thread";
  for (int i = 0; i < num_threads; i++) {
    LOG(INFO) << "run predictor " << i;
    ASSERT_TRUE(predictors[i]->Run(inputs, &outputs));
  }

  LOG(INFO) << "Run with multiple threads";
  std::vector<std::thread> threads;
  for (int i = 0; i < num_threads; i++) {
    threads.emplace_back([&predictors, &inputs, i] {
      LOG(INFO) << "thread #" << i << " running";
      std::vector<PaddleTensor> outputs;
Y
Yan Chunwei 已提交
183
      auto predictor = predictors.front()->Clone();
184
      for (int j = 0; j < 10; j++) {
Y
Yan Chunwei 已提交
185
        ASSERT_TRUE(predictor->Run(inputs, &outputs));
186 187 188 189 190 191 192 193 194
      }
    });
  }

  for (auto& t : threads) {
    t.join();
  }
}

Y
Yan Chunwei 已提交
195 196 197 198
TEST(AnalysisPredictor, memory_optim) {
  AnalysisConfig config(FLAGS_dirname);
  config.DisableGpu();
  config.EnableMemoryOptim(true);
Y
Yan Chunwei 已提交
199
  config.SwitchIrDebug();
Y
Yan Chunwei 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

  auto native_predictor =
      CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());

  // 2. Dummy Input Data
  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data.Reset(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  std::vector<PaddleTensor> inputs(4, tensor);
  std::vector<PaddleTensor> output, output1;

  {
    // The first predictor help to cache the memory optimize strategy.
    auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
217 218
    LOG(INFO) << "serialized program: " << predictor->GetSerializedProgram();
    ASSERT_FALSE(predictor->GetSerializedProgram().empty());
Y
Yan Chunwei 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

    // Run several times to check the parameters are not reused by mistake.
    for (int i = 0; i < 5; i++) {
      ASSERT_TRUE(predictor->Run(inputs, &output));
    }
  }

  {
    output.clear();
    // The second predictor to perform memory optimization.
    config.EnableMemoryOptim(false);
    auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);

    // Run with memory optimization
    ASSERT_TRUE(predictor->Run(inputs, &output));
  }

  // Run native
  ASSERT_TRUE(native_predictor->Run(inputs, &output1));

  LOG(INFO) << "the output " << inference::DescribeTensor(output.front());
  LOG(INFO) << "the native output "
            << inference::DescribeTensor(output1.front());

  inference::CompareResult(output, output1);
}

246
}  // namespace paddle