sum_op.h 2.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename Place, typename T>
Y
Yu Yang 已提交
25
class SumKernel : public framework::OpKernel<T> {
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto ins = context.MultiInput<Tensor>("X");
    auto* out = context.Output<Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());

    auto place = context.GetEigenDevice<Place>();
    auto result = EigenVector<T>::Flatten(*out);

    int N = ins.size();
    auto in = EigenVector<T>::Flatten(*(ins[0]));
    result.device(place) = in;
    for (int i = 1; i < N; i++) {
      auto in = EigenVector<T>::Flatten(*(ins[i]));
      result.device(place) = result + in;
    }
  }
};

template <typename Place, typename T>
Y
Yu Yang 已提交
46
class SumGradKernel : public framework::OpKernel<T> {
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* input = context.Input<Tensor>(framework::GradVarName("Out"));
    auto outs = context.MultiOutput<Tensor>(framework::GradVarName("X"));
    for (auto out : outs) {
      out->mutable_data<T>(context.GetPlace());
    }

    auto place = context.GetEigenDevice<Place>();
    auto in = EigenVector<T>::Flatten(*input);
    for (auto out : outs) {
      auto result = EigenVector<T>::Flatten(*out);
      result.device(place) = in;
    }
  }
};

}  // namespace operators
}  // namespace paddle