mot.py 23.2 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
G
George Ni 已提交
16 17 18
import sys
import cv2
import glob
G
George Ni 已提交
19
import numpy as np
20
from collections import OrderedDict, defaultdict
G
George Ni 已提交
21 22 23 24 25
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
from .dataset import DetDataset, _make_dataset, _is_valid_file
G
George Ni 已提交
26 27 28 29 30 31 32 33 34
from ppdet.core.workspace import register, serializable
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


@register
@serializable
class MOTDataSet(DetDataset):
    """
35 36
    Load dataset with MOT format, only support single class MOT.

G
George Ni 已提交
37 38 39 40 41
    Args:
        dataset_dir (str): root directory for dataset.
        image_lists (str|list): mot data image lists, muiti-source mot dataset.
        data_fields (list): key name of data dictionary, at least have 'image'.
        sample_num (int): number of samples to load, -1 means all.
G
George Ni 已提交
42

G
George Ni 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    Notes:
        MOT datasets root directory following this:
            dataset/mot
            |——————image_lists
            |        |——————caltech.train  
            |        |——————caltech.val   
            |        |——————mot16.train  
            |        |——————mot17.train  
            |        ......
            |——————Caltech
            |——————MOT17
            |——————......

        All the MOT datasets have the following structure:
            Caltech
            |——————images
            |        └——————00001.jpg
            |        |—————— ...
            |        └——————0000N.jpg
            └——————labels_with_ids
                        └——————00001.txt
                        |—————— ...
                        └——————0000N.txt
            or

            MOT17
            |——————images
            |        └——————train
            |        └——————test
            └——————labels_with_ids
                        └——————train
    """

    def __init__(self,
                 dataset_dir=None,
                 image_lists=[],
                 data_fields=['image'],
G
George Ni 已提交
80
                 sample_num=-1):
G
George Ni 已提交
81 82 83 84 85 86 87 88
        super(MOTDataSet, self).__init__(
            dataset_dir=dataset_dir,
            data_fields=data_fields,
            sample_num=sample_num)
        self.dataset_dir = dataset_dir
        self.image_lists = image_lists
        if isinstance(self.image_lists, str):
            self.image_lists = [self.image_lists]
G
George Ni 已提交
89 90
        self.roidbs = None
        self.cname2cid = None
G
George Ni 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

    def get_anno(self):
        if self.image_lists == []:
            return
        # only used to get categories and metric
        return os.path.join(self.dataset_dir, 'image_lists',
                            self.image_lists[0])

    def parse_dataset(self):
        self.img_files = OrderedDict()
        self.img_start_index = OrderedDict()
        self.label_files = OrderedDict()
        self.tid_num = OrderedDict()
        self.tid_start_index = OrderedDict()

        img_index = 0
        for data_name in self.image_lists:
            # check every data image list
            image_lists_dir = os.path.join(self.dataset_dir, 'image_lists')
            assert os.path.isdir(image_lists_dir), \
                "The {} is not a directory.".format(image_lists_dir)

            list_path = os.path.join(image_lists_dir, data_name)
            assert os.path.exists(list_path), \
                "The list path {} does not exist.".format(list_path)

            # record img_files, filter out empty ones
            with open(list_path, 'r') as file:
                self.img_files[data_name] = file.readlines()
                self.img_files[data_name] = [
                    os.path.join(self.dataset_dir, x.strip())
                    for x in self.img_files[data_name]
                ]
                self.img_files[data_name] = list(
                    filter(lambda x: len(x) > 0, self.img_files[data_name]))

                self.img_start_index[data_name] = img_index
                img_index += len(self.img_files[data_name])

            # record label_files
            self.label_files[data_name] = [
                x.replace('images', 'labels_with_ids').replace(
                    '.png', '.txt').replace('.jpg', '.txt')
                for x in self.img_files[data_name]
            ]

        for data_name, label_paths in self.label_files.items():
            max_index = -1
            for lp in label_paths:
                lb = np.loadtxt(lp)
                if len(lb) < 1:
                    continue
                if len(lb.shape) < 2:
                    img_max = lb[1]
                else:
                    img_max = np.max(lb[:, 1])
                if img_max > max_index:
                    max_index = img_max
            self.tid_num[data_name] = int(max_index + 1)

        last_index = 0
        for i, (k, v) in enumerate(self.tid_num.items()):
            self.tid_start_index[k] = last_index
            last_index += v

156
        self.num_identities_dict = defaultdict(int)
F
Feng Ni 已提交
157
        self.num_identities_dict[0] = int(last_index + 1)  # single class
G
George Ni 已提交
158 159 160 161 162
        self.num_imgs_each_data = [len(x) for x in self.img_files.values()]
        self.total_imgs = sum(self.num_imgs_each_data)

        logger.info('MOT dataset summary: ')
        logger.info(self.tid_num)
163 164 165 166
        logger.info('Total images: {}'.format(self.total_imgs))
        logger.info('Image start index: {}'.format(self.img_start_index))
        logger.info('Total identities: {}'.format(self.num_identities_dict[0]))
        logger.info('Identity start index: {}'.format(self.tid_start_index))
G
George Ni 已提交
167 168

        records = []
G
George Ni 已提交
169
        cname2cid = mot_label()
G
George Ni 已提交
170 171 172 173 174 175 176 177 178 179

        for img_index in range(self.total_imgs):
            for i, (k, v) in enumerate(self.img_start_index.items()):
                if img_index >= v:
                    data_name = list(self.label_files.keys())[i]
                    start_index = v
            img_file = self.img_files[data_name][img_index - start_index]
            lbl_file = self.label_files[data_name][img_index - start_index]

            if not os.path.exists(img_file):
180 181
                logger.warning('Illegal image file: {}, and it will be ignored'.
                               format(img_file))
G
George Ni 已提交
182 183
                continue
            if not os.path.isfile(lbl_file):
184 185
                logger.warning('Illegal label file: {}, and it will be ignored'.
                               format(lbl_file))
G
George Ni 已提交
186 187 188 189 190 191 192 193 194 195 196
                continue

            labels = np.loadtxt(lbl_file, dtype=np.float32).reshape(-1, 6)
            # each row in labels (N, 6) is [gt_class, gt_identity, cx, cy, w, h]

            cx, cy = labels[:, 2], labels[:, 3]
            w, h = labels[:, 4], labels[:, 5]
            gt_bbox = np.stack((cx, cy, w, h)).T.astype('float32')
            gt_class = labels[:, 0:1].astype('int32')
            gt_score = np.ones((len(labels), 1)).astype('float32')
            gt_ide = labels[:, 1:2].astype('int32')
197 198 199
            for i, _ in enumerate(gt_ide):
                if gt_ide[i] > -1:
                    gt_ide[i] += self.tid_start_index[data_name]
G
George Ni 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

            mot_rec = {
                'im_file': img_file,
                'im_id': img_index,
            } if 'image' in self.data_fields else {}

            gt_rec = {
                'gt_class': gt_class,
                'gt_score': gt_score,
                'gt_bbox': gt_bbox,
                'gt_ide': gt_ide,
            }

            for k, v in gt_rec.items():
                if k in self.data_fields:
                    mot_rec[k] = v

            records.append(mot_rec)
            if self.sample_num > 0 and img_index >= self.sample_num:
                break
        assert len(records) > 0, 'not found any mot record in %s' % (
            self.image_lists)
        self.roidbs, self.cname2cid = records, cname2cid


225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
@register
@serializable
class MCMOTDataSet(DetDataset):
    """
    Load dataset with MOT format, support multi-class MOT.

    Args:
        dataset_dir (str): root directory for dataset.
        image_lists (list(str)): mcmot data image lists, muiti-source mcmot dataset.
        data_fields (list): key name of data dictionary, at least have 'image'.
        label_list (str): if use_default_label is False, will load
            mapping between category and class index.
        sample_num (int): number of samples to load, -1 means all.

    Notes:
        MCMOT datasets root directory following this:
            dataset/mot
            |——————image_lists
            |        |——————visdrone_mcmot.train  
            |        |——————visdrone_mcmot.val   
            visdrone_mcmot
            |——————images
            |        └——————train
            |        └——————val
            └——————labels_with_ids
                        └——————train
    """
F
Feng Ni 已提交
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    def __init__(self,
                 dataset_dir=None,
                 image_lists=[],
                 data_fields=['image'],
                 label_list=None,
                 sample_num=-1):
        super(MCMOTDataSet, self).__init__(
            dataset_dir=dataset_dir,
            data_fields=data_fields,
            sample_num=sample_num)
        self.dataset_dir = dataset_dir
        self.image_lists = image_lists
        if isinstance(self.image_lists, str):
            self.image_lists = [self.image_lists]
        self.label_list = label_list
        self.roidbs = None
        self.cname2cid = None

    def get_anno(self):
        if self.image_lists == []:
            return
        # only used to get categories and metric
        return os.path.join(self.dataset_dir, 'image_lists',
                            self.image_lists[0])

    def parse_dataset(self):
        self.img_files = OrderedDict()
        self.img_start_index = OrderedDict()
        self.label_files = OrderedDict()
        self.tid_num = OrderedDict()
        self.tid_start_idx_of_cls_ids = defaultdict(dict)  # for MCMOT

        img_index = 0
        for data_name in self.image_lists:
            # check every data image list
            image_lists_dir = os.path.join(self.dataset_dir, 'image_lists')
            assert os.path.isdir(image_lists_dir), \
                "The {} is not a directory.".format(image_lists_dir)

            list_path = os.path.join(image_lists_dir, data_name)
            assert os.path.exists(list_path), \
                "The list path {} does not exist.".format(list_path)

            # record img_files, filter out empty ones
            with open(list_path, 'r') as file:
                self.img_files[data_name] = file.readlines()
                self.img_files[data_name] = [
                    os.path.join(self.dataset_dir, x.strip())
                    for x in self.img_files[data_name]
                ]
                self.img_files[data_name] = list(
                    filter(lambda x: len(x) > 0, self.img_files[data_name]))

                self.img_start_index[data_name] = img_index
                img_index += len(self.img_files[data_name])

            # record label_files
            self.label_files[data_name] = [
                x.replace('images', 'labels_with_ids').replace(
                    '.png', '.txt').replace('.jpg', '.txt')
                for x in self.img_files[data_name]
            ]

        for data_name, label_paths in self.label_files.items():
            # using max_ids_dict rather than max_index
            max_ids_dict = defaultdict(int)
            for lp in label_paths:
                lb = np.loadtxt(lp)
                if len(lb) < 1:
                    continue
                lb = lb.reshape(-1, 6)
                for item in lb:
                    if item[1] > max_ids_dict[int(item[0])]:
                        # item[0]: cls_id
                        # item[1]: track id
                        max_ids_dict[int(item[0])] = int(item[1])
            # track id number
            self.tid_num[data_name] = max_ids_dict

        last_idx_dict = defaultdict(int)
        for i, (k, v) in enumerate(self.tid_num.items()):  # each sub dataset
            for cls_id, id_num in v.items():  # v is a max_ids_dict
                self.tid_start_idx_of_cls_ids[k][cls_id] = last_idx_dict[cls_id]
                last_idx_dict[cls_id] += id_num

        self.num_identities_dict = defaultdict(int)
        for k, v in last_idx_dict.items():
            self.num_identities_dict[k] = int(v)  # total ids of each category

        self.num_imgs_each_data = [len(x) for x in self.img_files.values()]
        self.total_imgs = sum(self.num_imgs_each_data)

        # cname2cid and cid2cname 
        cname2cid = {}
F
Feng Ni 已提交
347
        if self.label_list is not None:
348 349 350 351 352 353
            # if use label_list for multi source mix dataset, 
            # please make sure label_list in the first sub_dataset at least.
            sub_dataset = self.image_lists[0].split('.')[0]
            label_path = os.path.join(self.dataset_dir, sub_dataset,
                                      self.label_list)
            if not os.path.exists(label_path):
F
Feng Ni 已提交
354 355 356 357 358 359 360 361 362 363
                logger.info(
                    "Note: label_list {} does not exists, use VisDrone 10 classes labels as default.".
                    format(label_path))
                cname2cid = visdrone_mcmot_label()
            else:
                with open(label_path, 'r') as fr:
                    label_id = 0
                    for line in fr.readlines():
                        cname2cid[line.strip()] = label_id
                        label_id += 1
364 365
        else:
            cname2cid = visdrone_mcmot_label()
F
Feng Ni 已提交
366

367 368 369 370 371 372 373 374
        cid2cname = dict([(v, k) for (k, v) in cname2cid.items()])

        logger.info('MCMOT dataset summary: ')
        logger.info(self.tid_num)
        logger.info('Total images: {}'.format(self.total_imgs))
        logger.info('Image start index: {}'.format(self.img_start_index))

        logger.info('Total identities of each category: ')
375
        num_identities_dict = sorted(
376 377
            self.num_identities_dict.items(), key=lambda x: x[0])
        total_IDs_all_cats = 0
378
        for (k, v) in num_identities_dict:
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
            logger.info('Category {} [{}] has {} IDs.'.format(k, cid2cname[k],
                                                              v))
            total_IDs_all_cats += v
        logger.info('Total identities of all categories: {}'.format(
            total_IDs_all_cats))

        logger.info('Identity start index of each category: ')
        for k, v in self.tid_start_idx_of_cls_ids.items():
            sorted_v = sorted(v.items(), key=lambda x: x[0])
            for (cls_id, start_idx) in sorted_v:
                logger.info('Start index of dataset {} category {:d} is {:d}'
                            .format(k, cls_id, start_idx))

        records = []
        for img_index in range(self.total_imgs):
            for i, (k, v) in enumerate(self.img_start_index.items()):
                if img_index >= v:
                    data_name = list(self.label_files.keys())[i]
                    start_index = v
            img_file = self.img_files[data_name][img_index - start_index]
            lbl_file = self.label_files[data_name][img_index - start_index]

            if not os.path.exists(img_file):
                logger.warning('Illegal image file: {}, and it will be ignored'.
                               format(img_file))
                continue
            if not os.path.isfile(lbl_file):
                logger.warning('Illegal label file: {}, and it will be ignored'.
                               format(lbl_file))
                continue

            labels = np.loadtxt(lbl_file, dtype=np.float32).reshape(-1, 6)
            # each row in labels (N, 6) is [gt_class, gt_identity, cx, cy, w, h]

            cx, cy = labels[:, 2], labels[:, 3]
            w, h = labels[:, 4], labels[:, 5]
            gt_bbox = np.stack((cx, cy, w, h)).T.astype('float32')
            gt_class = labels[:, 0:1].astype('int32')
            gt_score = np.ones((len(labels), 1)).astype('float32')
            gt_ide = labels[:, 1:2].astype('int32')
            for i, _ in enumerate(gt_ide):
                if gt_ide[i] > -1:
                    cls_id = int(gt_class[i])
                    start_idx = self.tid_start_idx_of_cls_ids[data_name][cls_id]
                    gt_ide[i] += start_idx

            mot_rec = {
                'im_file': img_file,
                'im_id': img_index,
            } if 'image' in self.data_fields else {}

            gt_rec = {
                'gt_class': gt_class,
                'gt_score': gt_score,
                'gt_bbox': gt_bbox,
                'gt_ide': gt_ide,
            }

            for k, v in gt_rec.items():
                if k in self.data_fields:
                    mot_rec[k] = v

            records.append(mot_rec)
            if self.sample_num > 0 and img_index >= self.sample_num:
                break
        assert len(records) > 0, 'not found any mot record in %s' % (
            self.image_lists)
        self.roidbs, self.cname2cid = records, cname2cid
G
George Ni 已提交
447 448


G
George Ni 已提交
449 450 451
@register
@serializable
class MOTImageFolder(DetDataset):
G
George Ni 已提交
452 453 454 455
    """
    Load MOT dataset with MOT format from image folder or video .
    Args:
        video_file (str): path of the video file, default ''.
456
        frame_rate (int): frame rate of the video, use cv2 VideoCapture if not set.
G
George Ni 已提交
457 458 459 460 461 462
        dataset_dir (str): root directory for dataset.
        keep_ori_im (bool): whether to keep original image, default False. 
            Set True when used during MOT model inference while saving
            images or video, or used in DeepSORT.
    """

G
George Ni 已提交
463
    def __init__(self,
G
George Ni 已提交
464
                 video_file=None,
465
                 frame_rate=-1,
G
George Ni 已提交
466 467 468 469 470 471 472 473
                 dataset_dir=None,
                 data_root=None,
                 image_dir=None,
                 sample_num=-1,
                 keep_ori_im=False,
                 **kwargs):
        super(MOTImageFolder, self).__init__(
            dataset_dir, image_dir, sample_num=sample_num)
G
George Ni 已提交
474
        self.video_file = video_file
G
George Ni 已提交
475 476 477 478
        self.data_root = data_root
        self.keep_ori_im = keep_ori_im
        self._imid2path = {}
        self.roidbs = None
479
        self.frame_rate = frame_rate
G
George Ni 已提交
480 481 482 483 484 485

    def check_or_download_dataset(self):
        return

    def parse_dataset(self, ):
        if not self.roidbs:
G
George Ni 已提交
486
            if self.video_file is None:
487
                self.frame_rate = 30  # set as default if infer image folder
G
George Ni 已提交
488 489 490 491 492
                self.roidbs = self._load_images()
            else:
                self.roidbs = self._load_video_images()

    def _load_video_images(self):
493 494 495 496
        if self.frame_rate == -1:
            # if frame_rate is not set for video, use cv2.VideoCapture
            cap = cv2.VideoCapture(self.video_file)
            self.frame_rate = int(cap.get(cv2.CAP_PROP_FPS))
G
George Ni 已提交
497 498 499

        extension = self.video_file.split('.')[-1]
        output_path = self.video_file.replace('.{}'.format(extension), '')
500 501
        frames_path = video2frames(self.video_file, output_path,
                                   self.frame_rate)
G
George Ni 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        self.video_frames = sorted(
            glob.glob(os.path.join(frames_path, '*.png')))

        self.video_length = len(self.video_frames)
        logger.info('Length of the video: {:d} frames.'.format(
            self.video_length))
        ct = 0
        records = []
        for image in self.video_frames:
            assert image != '' and os.path.isfile(image), \
                    "Image {} not found".format(image)
            if self.sample_num > 0 and ct >= self.sample_num:
                break
            rec = {'im_id': np.array([ct]), 'im_file': image}
            if self.keep_ori_im:
                rec.update({'keep_ori_im': 1})
            self._imid2path[ct] = image
            ct += 1
            records.append(rec)
        assert len(records) > 0, "No image file found"
        return records
G
George Ni 已提交
523

G
George Ni 已提交
524
    def _find_images(self):
G
George Ni 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537
        image_dir = self.image_dir
        if not isinstance(image_dir, Sequence):
            image_dir = [image_dir]
        images = []
        for im_dir in image_dir:
            if os.path.isdir(im_dir):
                im_dir = os.path.join(self.dataset_dir, im_dir)
                images.extend(_make_dataset(im_dir))
            elif os.path.isfile(im_dir) and _is_valid_file(im_dir):
                images.append(im_dir)
        return images

    def _load_images(self):
G
George Ni 已提交
538
        images = self._find_images()
G
George Ni 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
        ct = 0
        records = []
        for image in images:
            assert image != '' and os.path.isfile(image), \
                    "Image {} not found".format(image)
            if self.sample_num > 0 and ct >= self.sample_num:
                break
            rec = {'im_id': np.array([ct]), 'im_file': image}
            if self.keep_ori_im:
                rec.update({'keep_ori_im': 1})
            self._imid2path[ct] = image
            ct += 1
            records.append(rec)
        assert len(records) > 0, "No image file found"
        return records

    def get_imid2path(self):
        return self._imid2path

    def set_images(self, images):
        self.image_dir = images
        self.roidbs = self._load_images()

562 563
    def set_video(self, video_file, frame_rate):
        # update video_file and frame_rate by command line of tools/infer_mot.py
G
George Ni 已提交
564
        self.video_file = video_file
565
        self.frame_rate = frame_rate
G
George Ni 已提交
566 567 568 569
        assert os.path.isfile(self.video_file) and _is_valid_video(self.video_file), \
                "wrong or unsupported file format: {}".format(self.video_file)
        self.roidbs = self._load_video_images()

G
George Ni 已提交
570

G
George Ni 已提交
571 572 573 574
def _is_valid_video(f, extensions=('.mp4', '.avi', '.mov', '.rmvb', 'flv')):
    return f.lower().endswith(extensions)


575
def video2frames(video_path, outpath, frame_rate, **kargs):
G
George Ni 已提交
576 577 578 579 580
    def _dict2str(kargs):
        cmd_str = ''
        for k, v in kargs.items():
            cmd_str += (' ' + str(k) + ' ' + str(v))
        return cmd_str
G
George Ni 已提交
581

G
George Ni 已提交
582 583 584
    ffmpeg = ['ffmpeg ', ' -y -loglevel ', ' error ']
    vid_name = os.path.basename(video_path).split('.')[0]
    out_full_path = os.path.join(outpath, vid_name)
G
George Ni 已提交
585

G
George Ni 已提交
586 587
    if not os.path.exists(out_full_path):
        os.makedirs(out_full_path)
G
George Ni 已提交
588

G
George Ni 已提交
589 590
    # video file name
    outformat = os.path.join(out_full_path, '%08d.png')
G
George Ni 已提交
591

G
George Ni 已提交
592
    cmd = ffmpeg
593 594 595
    cmd = ffmpeg + [
        ' -i ', video_path, ' -r ', str(frame_rate), ' -f image2 ', outformat
    ]
G
George Ni 已提交
596 597
    cmd = ''.join(cmd) + _dict2str(kargs)

598 599
    if os.system(cmd) != 0:
        raise RuntimeError('ffmpeg process video: {} error'.format(video_path))
G
George Ni 已提交
600 601 602 603
        sys.exit(-1)

    sys.stdout.flush()
    return out_full_path
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624


def mot_label():
    labels_map = {'person': 0}
    return labels_map


def visdrone_mcmot_label():
    labels_map = {
        'pedestrian': 0,
        'people': 1,
        'bicycle': 2,
        'car': 3,
        'van': 4,
        'truck': 5,
        'tricycle': 6,
        'awning-tricycle': 7,
        'bus': 8,
        'motor': 9,
    }
    return labels_map