batch_norm_op.h 3.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Q
qingqing01 已提交
16 17 18
#include <memory>
#include <string>
#include <unordered_map>
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Q
Qiao Longfei 已提交
21 22 23 24

namespace paddle {
namespace operators {

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

template <typename T>
using EigenArrayMap =
    Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;

Q
qingqing01 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
class BatchNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override;
};

class BatchNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override;
};

class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override;
};

class BatchNormGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override;

  virtual std::string GradOpType() const {
    return this->ForwardOpType() + "_grad";
  }
};

class BatchNormOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Y"}};
  }
};

Q
QI JUN 已提交
87
template <typename DeviceContext, typename T>
Q
Qiao Longfei 已提交
88 89
class BatchNormKernel : public framework::OpKernel<T> {
 public:
Q
qingqing01 已提交
90
  void Compute(const framework::ExecutionContext &ctx) const override;
Q
Qiao Longfei 已提交
91 92
};

Q
QI JUN 已提交
93
template <typename DeviceContext, typename T>
Q
Qiao Longfei 已提交
94 95
class BatchNormGradKernel : public framework::OpKernel<T> {
 public:
Q
qingqing01 已提交
96
  void Compute(const framework::ExecutionContext &ctx) const override;
Q
Qiao Longfei 已提交
97 98
};

Q
qingqing01 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
inline void ExtractNCWHD(const framework::DDim &dims,
                         const DataLayout &data_layout, int *N, int *C, int *H,
                         int *W, int *D) {
  *N = dims[0];
  if (dims.size() == 2) {
    *C = dims[1];
    *H = 1;
    *W = 1;
    *D = 1;
  } else {
    *C = data_layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
    *H = data_layout == DataLayout::kNCHW ? dims[2] : dims[1];
    *W = dims.size() > 3
             ? (data_layout == DataLayout::kNCHW ? dims[3] : dims[2])
             : 1;
    *D = dims.size() > 4
             ? (data_layout == DataLayout::kNCHW ? dims[4] : dims[3])
             : 1;
  }
}

Q
Qiao Longfei 已提交
120 121
}  // namespace operators
}  // namespace paddle