mot_sde_infer.py 17.5 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
import paddle
from benchmark_utils import PaddleInferBenchmark
22
from preprocess import preprocess
G
George Ni 已提交
23 24 25 26 27 28 29 30 31
from tracker import DeepSORTTracker
from ppdet.modeling.mot import visualization as mot_vis
from ppdet.modeling.mot.utils import Timer as MOTTimer
from ppdet.modeling.mot.utils import Detection

from paddle.inference import Config
from paddle.inference import create_predictor
from utils import argsparser, Timer, get_current_memory_mb
from infer import get_test_images, print_arguments, PredictConfig, Detector
32 33
from mot_jde_infer import write_mot_results
from infer import load_predictor
G
George Ni 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

# Global dictionary
MOT_SUPPORT_MODELS = {'DeepSORT'}


def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


def scale_coords(coords, input_shape, im_shape, scale_factor):
    im_shape = im_shape[0]
    ratio = scale_factor[0][0]
    pad_w = (input_shape[1] - int(im_shape[1])) / 2
    pad_h = (input_shape[0] - int(im_shape[0])) / 2
    coords[:, 0::2] -= pad_w
    coords[:, 1::2] -= pad_h
    coords[:, 0:4] /= ratio
    coords[:, :4] = np.clip(coords[:, :4], a_min=0, a_max=coords[:, :4].max())
    return coords.round()


def clip_box(xyxy, input_shape, im_shape, scale_factor):
    im_shape = im_shape[0]
    ratio = scale_factor[0][0]
    img0_shape = [int(im_shape[0] / ratio), int(im_shape[1] / ratio)]
    xyxy[:, 0::2] = np.clip(xyxy[:, 0::2], a_min=0, a_max=img0_shape[1])
    xyxy[:, 1::2] = np.clip(xyxy[:, 1::2], a_min=0, a_max=img0_shape[0])
    return xyxy


def preprocess_reid(imgs,
                    w=64,
                    h=192,
                    mean=[0.485, 0.456, 0.406],
                    std=[0.229, 0.224, 0.225]):
    im_batch = []
    for img in imgs:
        img = cv2.resize(img, (w, h))
        img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
        img_mean = np.array(mean).reshape((3, 1, 1))
        img_std = np.array(std).reshape((3, 1, 1))
        img -= img_mean
        img /= img_std
        img = np.expand_dims(img, axis=0)
        im_batch.append(img)
    im_batch = np.concatenate(im_batch, 0)
    return im_batch


96
class SDE_Detector(Detector):
G
George Ni 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
117
                 batch_size=1,
G
George Ni 已提交
118 119 120 121 122 123
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
124 125 126
        super(SDE_Detector, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
G
George Ni 已提交
127
            device=device,
128 129
            run_mode=run_mode,
            batch_size=batch_size,
G
George Ni 已提交
130 131 132 133 134 135
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
136
        assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
G
George Ni 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

    def postprocess(self, boxes, input_shape, im_shape, scale_factor,
                    threshold):
        pred_bboxes = scale_coords(boxes[:, 2:], input_shape, im_shape,
                                   scale_factor)
        pred_bboxes = clip_box(pred_bboxes, input_shape, im_shape, scale_factor)
        pred_scores = boxes[:, 1:2]
        keep_mask = pred_scores[:, 0] >= threshold
        return pred_bboxes[keep_mask], pred_scores[keep_mask]

    def predict(self, image, threshold=0.5, warmup=0, repeats=1):
        '''
        Args:
            image (np.ndarray): image numpy data
            threshold (float): threshold of predicted box' score
        Returns:
            pred_bboxes, pred_scores (np.ndarray)
        '''
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(image)
        self.det_times.preprocess_time_s.end()

        pred_bboxes, pred_scores = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
        input_shape = inputs['image'].shape[2:]
        im_shape = inputs['im_shape']
        scale_factor = inputs['scale_factor']
        pred_bboxes, pred_scores = self.postprocess(
            boxes, input_shape, im_shape, scale_factor, threshold)
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1
        return pred_bboxes, pred_scores


190
class SDE_ReID(object):
G
George Ni 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        self.pred_config = pred_config
        self.predictor, self.config = load_predictor(
            model_dir,
            run_mode=run_mode,
            min_subgraph_size=self.pred_config.min_subgraph_size,
            device=device,
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
217
        assert pred_config.tracker, "Tracking model should have tracker"
G
George Ni 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        self.tracker = DeepSORTTracker()

    def preprocess(self, crops):
        inputs = {}
        inputs['crops'] = np.array(crops).astype('float32')
        return inputs

    def postprocess(self, bbox_tlwh, pred_scores, features):
        detections = [
            Detection(tlwh, score, feat)
            for tlwh, score, feat in zip(bbox_tlwh, pred_scores, features)
        ]
        self.tracker.predict()
        online_targets = self.tracker.update(detections)

        online_tlwhs = []
        online_scores = []
        online_ids = []
        for track in online_targets:
            if not track.is_confirmed() or track.time_since_update > 1:
                continue
            online_tlwhs.append(track.to_tlwh())
            online_scores.append(1.0)
            online_ids.append(track.track_id)
        return online_tlwhs, online_scores, online_ids

    def predict(self, crops, bbox_tlwh, pred_scores, warmup=0, repeats=1):
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(crops)
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
            features = feature_tensor.copy_to_cpu()

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
            features = feature_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
        online_tlwhs, online_scores, online_ids = self.postprocess(
            bbox_tlwh, pred_scores, features)
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1
        return online_tlwhs, online_scores, online_ids

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    def get_crops(self, xyxy, ori_img, pred_scores, w, h):
        self.det_times.preprocess_time_s.start()
        crops = []
        keep_scores = []
        xyxy = xyxy.astype(np.int64)
        ori_img = ori_img.transpose(1, 0, 2)  # [h,w,3]->[w,h,3]
        for i, bbox in enumerate(xyxy):
            if bbox[2] <= bbox[0] or bbox[3] <= bbox[1]:
                continue
            crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
            crops.append(crop)
            keep_scores.append(pred_scores[i])
        if len(crops) == 0:
            return [], []
        crops = preprocess_reid(crops, w, h)
        self.det_times.preprocess_time_s.end()
        return crops, keep_scores

G
George Ni 已提交
293 294 295 296 297 298 299

def predict_image(detector, reid_model, image_list):
    results = []
    for i, img_file in enumerate(image_list):
        frame = cv2.imread(img_file)
        if FLAGS.run_benchmark:
            pred_bboxes, pred_scores = detector.predict(
300
                [frame], FLAGS.threshold, warmup=10, repeats=10)
G
George Ni 已提交
301 302 303 304 305 306
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
307 308
            pred_bboxes, pred_scores = detector.predict([frame],
                                                        FLAGS.threshold)
G
George Ni 已提交
309 310 311 312 313 314

        # process
        bbox_tlwh = np.concatenate(
            (pred_bboxes[:, 0:2],
             pred_bboxes[:, 2:4] - pred_bboxes[:, 0:2] + 1),
            axis=1)
315
        crops, pred_scores = reid_model.get_crops(
G
George Ni 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329
            pred_bboxes, frame, pred_scores, w=64, h=192)

        if FLAGS.run_benchmark:
            online_tlwhs, online_scores, online_ids = reid_model.predict(
                crops, bbox_tlwh, pred_scores, warmup=10, repeats=10)
        else:
            online_tlwhs, online_scores, online_ids = reid_model.predict(
                crops, bbox_tlwh, pred_scores)
            online_im = mot_vis.plot_tracking(
                frame, online_tlwhs, online_ids, online_scores, frame_id=i)

            if FLAGS.save_images:
                if not os.path.exists(FLAGS.output_dir):
                    os.makedirs(FLAGS.output_dir)
330 331 332 333
                img_name = os.path.split(img_file)[-1]
                out_path = os.path.join(FLAGS.output_dir, img_name)
                cv2.imwrite(out_path, online_im)
                print("save result to: " + out_path)
G
George Ni 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362


def predict_video(detector, reid_model, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'mot_output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    fps = 30
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print('frame_count', frame_count)
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    frame_id = 0
    timer = MOTTimer()
    results = []
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer.tic()
363
        pred_bboxes, pred_scores = detector.predict([frame], FLAGS.threshold)
G
George Ni 已提交
364 365 366 367 368
        timer.toc()
        bbox_tlwh = np.concatenate(
            (pred_bboxes[:, 0:2],
             pred_bboxes[:, 2:4] - pred_bboxes[:, 0:2] + 1),
            axis=1)
369
        crops, pred_scores = reid_model.get_crops(
G
George Ni 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
            pred_bboxes, frame, pred_scores, w=64, h=192)

        online_tlwhs, online_scores, online_ids = reid_model.predict(
            crops, bbox_tlwh, pred_scores)

        results.append((frame_id + 1, online_tlwhs, online_scores, online_ids))
        fps = 1. / timer.average_time
        online_im = mot_vis.plot_tracking(
            frame,
            online_tlwhs,
            online_ids,
            online_scores,
            frame_id=frame_id,
            fps=fps)
        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)),
                online_im)
        frame_id += 1
        print('detect frame:%d' % (frame_id))
        im = np.array(online_im)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Tracking Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    if FLAGS.save_mot_txts:
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
        write_mot_results(result_filename, results)
    writer.release()


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
408
    detector = SDE_Detector(
G
George Ni 已提交
409 410 411 412 413 414 415 416 417 418 419 420
        pred_config,
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    pred_config = PredictConfig(FLAGS.reid_model_dir)
421
    reid_model = SDE_ReID(
G
George Ni 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
        pred_config,
        FLAGS.reid_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, reid_model, FLAGS.camera_id)
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, reid_model, img_list)

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
            reid_model.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
            det_model_dir = FLAGS.model_dir
            det_model_info = {
                'model_name': det_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(detector, img_list, det_model_info, name='Det')

            reid_model_dir = FLAGS.reid_model_dir
            reid_model_info = {
                'model_name': reid_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(reid_model, img_list, reid_model_info, name='ReID')


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()