post_process.py 6.8 KB
Newer Older
F
FDInSky 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
import six
import os
import numpy as np
from numba import jit
from .bbox import delta2bbox, clip_bbox, expand_bbox, nms


def bbox_post_process(bboxes,
                      bbox_probs,
                      bbox_deltas,
                      im_info,
                      keep_top_k=100,
                      score_thresh=0.05,
                      nms_thresh=0.5,
                      class_nums=81,
                      bbox_reg_weights=[0.1, 0.1, 0.2, 0.2]):
    bbox_nums = [0, bboxes.shape[0]]
    bboxes_v = np.array(bboxes)
    bbox_probs_v = np.array(bbox_probs)
    bbox_deltas_v = np.array(bbox_deltas)
    variance_v = np.array(bbox_reg_weights)
    new_bboxes = [[] for _ in range(len(bbox_nums) - 1)]
    new_bbox_nums = [0]
    for i in range(len(bbox_nums) - 1):
        start = bbox_nums[i]
        end = bbox_nums[i + 1]
        if start == end:
            continue

        bbox_deltas_n = bbox_deltas_v[start:end, :]  # box delta 
        rois_n = bboxes_v[start:end, :]  # box 
        rois_n = rois_n / im_info[i][2]  # scale 
        rois_n = delta2bbox(bbox_deltas_n, rois_n, variance_v)
        rois_n = clip_bbox(rois_n, im_info[i][:2] / im_info[i][2])
        cls_boxes = [[] for _ in range(class_nums)]
        scores_n = bbox_probs_v[start:end, :]
        for j in range(1, class_nums):
            inds = np.where(scores_n[:, j] > score_thresh)[0]
            scores_j = scores_n[inds, j]
            rois_j = rois_n[inds, j * 4:(j + 1) * 4]
            dets_j = np.hstack((scores_j[:, np.newaxis], rois_j)).astype(
                np.float32, copy=False)
            keep = nms(dets_j, nms_thresh)
            nms_dets = dets_j[keep, :]
            #add labels
            label = np.array([j for _ in range(len(keep))])
            nms_dets = np.hstack((label[:, np.newaxis], nms_dets)).astype(
                np.float32, copy=False)
            cls_boxes[j] = nms_dets

        # Limit to max_per_image detections **over all classes**
        image_scores = np.hstack(
            [cls_boxes[j][:, 1] for j in range(1, class_nums)])
        if len(image_scores) > keep_top_k:
            image_thresh = np.sort(image_scores)[-keep_top_k]
            for j in range(1, class_nums):
                keep = np.where(cls_boxes[j][:, 1] >= image_thresh)[0]
                cls_boxes[j] = cls_boxes[j][keep, :]
        new_bboxes_n = np.vstack([cls_boxes[j] for j in range(1, class_nums)])
        new_bboxes[i] = new_bboxes_n
        new_bbox_nums.append(len(new_bboxes_n) + new_bbox_nums[-1])
        labels = new_bboxes_n[:, 0]
        scores = new_bboxes_n[:, 1]
        boxes = new_bboxes_n[:, 2:]
    new_bboxes = np.vstack([new_bboxes[k] for k in range(len(bbox_nums) - 1)])
    new_bbox_nums = np.array(new_bbox_nums)
    return new_bbox_nums, new_bboxes


@jit
def mask_post_process(bbox_nums, bboxes, masks, im_info):
    bboxes = np.array(bboxes)
    M = cfg.resolution
    scale = (M + 2.0) / M
    masks_v = np.array(masks)
    boxes = bboxes[:, 2:]
    labels = bboxes[:, 0]
    segms_results = [[] for _ in range(len(bbox_nums) - 1)]
    sum = 0
    for i in range(len(bbox_nums) - 1):
        bboxes_n = bboxes[bbox_nums[i]:bbox_nums[i + 1]]
        cls_segms = []
        masks_n = masks_v[bbox_nums[i]:bbox_nums[i + 1]]
        boxes_n = boxes[bbox_nums[i]:bbox_nums[i + 1]]
        labels_n = labels[bbox_nums[i]:bbox_nums[i + 1]]
        im_h = int(round(im_info[i][0] / im_info[i][2]))
        im_w = int(round(im_info[i][1] / im_info[i][2]))
        boxes_n = expand_boxes(boxes_n, scale)
        boxes_n = boxes_n.astype(np.int32)
        padded_mask = np.zeros((M + 2, M + 2), dtype=np.float32)
        for j in range(len(bboxes_n)):
            class_id = int(labels_n[j])
            padded_mask[1:-1, 1:-1] = masks_n[j, class_id, :, :]

            ref_box = boxes_n[j, :]
            w = ref_box[2] - ref_box[0] + 1
            h = ref_box[3] - ref_box[1] + 1
            w = np.maximum(w, 1)
            h = np.maximum(h, 1)

            mask = cv2.resize(padded_mask, (w, h))
            mask = np.array(mask > cfg.mrcnn_thresh_binarize, dtype=np.uint8)
            im_mask = np.zeros((im_h, im_w), dtype=np.uint8)

            x_0 = max(ref_box[0], 0)
            x_1 = min(ref_box[2] + 1, im_w)
            y_0 = max(ref_box[1], 0)
            y_1 = min(ref_box[3] + 1, im_h)
            im_mask[y_0:y_1, x_0:x_1] = mask[(y_0 - ref_box[1]):(y_1 - ref_box[
                1]), (x_0 - ref_box[0]):(x_1 - ref_box[0])]
            sum += im_mask.sum()
            rle = mask_util.encode(
                np.array(
                    im_mask[:, :, np.newaxis], order='F'))[0]
            cls_segms.append(rle)
        segms_results[i] = np.array(cls_segms)[:, np.newaxis]
    segms_results = np.vstack([segms_results[k] for k in range(len(lod) - 1)])
    bboxes = np.hstack([segms_results, bboxes])
    return bboxes[:, :3]


@jit
def get_det_res(bbox_nums,
                bbox,
                image_id,
                image_shape,
                num_id_to_cat_id_map,
                batch_size=1):
    det_res = []
    bbox_v = np.array(bbox)
    if bbox_v.shape == (
            1,
            1, ):
        return dts_res
    assert (len(bbox_nums) == batch_size + 1), \
      "Error bbox_nums Tensor offset dimension. bbox_nums({}) vs. batch_size({})"\
                    .format(len(bbox_nums), batch_size)
    k = 0
    for i in range(batch_size):
        dt_num_this_img = bbox_nums[i + 1] - bbox_nums[i]
        image_id = int(image_id[i][0])
        image_width = int(image_shape[i][1])  #int(data[i][-1][1])
        image_height = int(image_shape[i][2])  #int(data[i][-1][2])
        for j in range(dt_num_this_img):
            dt = bbox_v[k]
            k = k + 1
            num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
            category_id = num_id_to_cat_id_map[num_id]
            w = xmax - xmin + 1
            h = ymax - ymin + 1
            bbox = [xmin, ymin, w, h]
            dt_res = {
                'image_id': image_id,
                'category_id': category_id,
                'bbox': bbox,
                'score': score
            }
            det_res.append(dt_res)
    return det_res


@jit
def get_seg_res(mask_nums, mask, image_id, num_id_to_cat_id_map, batch_size=1):
    seg_res = []
    mask_v = np.array(mask)
    k = 0
    for i in range(batch_size):
        image_id = int(image_id[i][0])
        dt_num_this_img = mask_nums[i + 1] - mask_nums[i]
        for j in range(dt_num_this_img):
            dt = mask_v[k]
            k = k + 1
            sg, num_id, score = dt.tolist()
            cat_id = num_id_to_cat_id_map[num_id]
            if six.PY3:
                if 'counts' in sg:
                    sg['counts'] = sg['counts'].decode("utf8")
            sg_res = {
                'image_id': image_id,
                'category_id': cat_id,
                'segmentation': sg,
                'score': score
            }
            seg_res.append(sg_res)
    return seg_res