You need to sign in or sign up before continuing.
test_activation_op.py 28.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qijun 已提交
15 16
import unittest
import numpy as np
K
Kexin Zhao 已提交
17
import paddle.fluid.core as core
Q
qijun 已提交
18
from op_test import OpTest
A
Abhinav Arora 已提交
19
from scipy.special import expit
Q
qijun 已提交
20 21 22 23 24


class TestExp(OpTest):
    def setUp(self):
        self.op_type = "exp"
25 26 27 28 29 30 31 32
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
33 34 35 36 37

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
38 39
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
40
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55
    def init_dtype(self):
        pass


class TestFP16Exp(TestExp):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

Q
qijun 已提交
56 57 58 59

class TestSigmoid(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
60 61 62 63 64 65 66 67
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
68 69 70 71

    def test_check_output(self):
        self.check_output()

72
    def test_check_grad(self):
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

    def init_dtype(self):
        pass


class TestFP16Sigmoid(TestSigmoid):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
90 91


92 93 94
class TestLogSigmoid(OpTest):
    def setUp(self):
        self.op_type = "logsigmoid"
95 96 97 98 99 100 101 102
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
103 104 105 106 107

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
108 109
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
110
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
111

112 113 114 115 116 117 118 119 120 121 122 123 124 125
    def init_dtype(self):
        pass


class TestFP16LogSigmoid(TestLogSigmoid):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

126

127 128 129
class TestTanh(OpTest):
    def setUp(self):
        self.op_type = "tanh"
130 131 132 133 134 135 136 137
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
138 139 140 141 142

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
143 144
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
145
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
146

147 148 149 150 151 152 153 154 155 156 157 158 159 160
    def init_dtype(self):
        pass


class TestFP16Tanh(TestTanh):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

161

K
Kavya Srinet 已提交
162 163 164
class TestTanhShrink(OpTest):
    def setUp(self):
        self.op_type = "tanh_shrink"
165 166 167 168 169 170 171 172
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [10, 17]).astype(self.dtype)
        out = x - np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
173 174 175 176 177

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
178 179
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
180
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
K
Kavya Srinet 已提交
181

182 183 184 185 186 187 188 189 190 191 192 193 194 195
    def init_dtype(self):
        pass


class TestFP16TanhShrink(TestTanhShrink):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

K
Kavya Srinet 已提交
196

197 198 199
class TestHardShrink(OpTest):
    def setUp(self):
        self.op_type = "hard_shrink"
200 201 202
        self.dtype = np.float32
        self.init_dtype()

203
        threshold = 0.5
204 205 206
        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.copy(x)
        out[(out >= -threshold) & (out <= threshold)] = 0
207 208

        self.attrs = {'lambda': threshold}
209 210
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
211 212 213 214 215

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
216 217
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
218
        self.check_grad(['X'], 'Out', max_relative_error=0.005)
219

220 221 222 223 224 225 226 227 228 229 230 231 232 233
    def init_dtype(self):
        pass


class TestFP16HardShrink(TestHardShrink):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

234

235 236 237
class TestSoftShrink(OpTest):
    def setUp(self):
        self.op_type = "softshrink"
238 239 240
        self.dtype = np.float32
        self.init_dtype()

241
        lambda_val = 0.1
242 243 244 245 246
        x = np.random.uniform(0.25, 10, [4, 4]).astype(self.dtype)
        out = np.copy(x)
        out = (out < -lambda_val) * (out + lambda_val) + (out > lambda_val) * (
            out - lambda_val)

247
        self.attrs = {'lambda': lambda_val}
248 249
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
250 251 252 253 254

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
255 256
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
257
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272
    def init_dtype(self):
        pass


class TestFP16SoftShrink(TestSoftShrink):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

273

274 275 276
class TestSqrt(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
277 278 279 280 281 282 283 284
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
285 286 287 288 289

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
290 291
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
292
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307
    def init_dtype(self):
        pass


class TestFP16Sqrt(TestSqrt):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

308 309 310 311

class TestAbs(OpTest):
    def setUp(self):
        self.op_type = "abs"
312 313 314 315
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
Q
qijun 已提交
316 317 318 319 320
        # Because we set delta = 0.005 in caculating numeric gradient,
        # if x is too small, such as 0.002, x_neg will be -0.003
        # x_pos will be 0.007, so the numeric gradient is unaccurate.
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
321 322 323 324
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
325 326 327 328 329

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
330 331
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
332
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347
    def init_dtype(self):
        pass


class TestFP16Abs(TestAbs):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

348

D
dzhwinter 已提交
349 350 351
class TestCeil(OpTest):
    def setUp(self):
        self.op_type = "ceil"
352 353 354 355 356 357 358 359
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
360 361 362 363

    def test_check_output(self):
        self.check_output()

D
dzhwinter 已提交
364
    # The same reason with TestFloor
D
dzhwinter 已提交
365

366 367 368 369 370 371 372 373 374 375 376 377 378 379
    def init_dtype(self):
        pass


class TestFP16Ceil(TestCeil):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

D
dzhwinter 已提交
380 381 382 383

class TestFloor(OpTest):
    def setUp(self):
        self.op_type = "floor"
384 385 386 387 388 389 390 391
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
392 393 394 395

    def test_check_output(self):
        self.check_output()

D
dzhwinter 已提交
396 397
    # the gradient on floor, ceil, round is undefined.
    # we return zero as gradient, but the numpy return nan 
D
dzhwinter 已提交
398

399 400 401 402 403 404 405 406 407 408 409 410 411 412
    def init_dtype(self):
        pass


class TestFP16Floor(TestFloor):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

D
dzhwinter 已提交
413

C
add cos  
chengduoZH 已提交
414 415 416
class TestCos(OpTest):
    def setUp(self):
        self.op_type = "cos"
417 418 419 420 421 422 423 424
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
425 426 427 428 429

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
430 431
        if self.dtype == np.float16:
            return
C
add sin  
chengduoZH 已提交
432 433
        self.check_grad(['X'], 'Out', max_relative_error=0.007)

434 435 436 437 438 439 440 441 442 443 444 445 446 447
    def init_dtype(self):
        pass


class TestFP16Cos(TestCos):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

C
add sin  
chengduoZH 已提交
448 449 450 451

class TestSin(OpTest):
    def setUp(self):
        self.op_type = "sin"
452 453 454 455 456 457 458 459
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
460 461 462 463 464

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
465 466
        if self.dtype == np.float16:
            return
C
add cos  
chengduoZH 已提交
467 468
        self.check_grad(['X'], 'Out', max_relative_error=0.007)

469 470 471 472 473 474 475 476 477 478 479 480 481 482
    def init_dtype(self):
        pass


class TestFP16Sin(TestSin):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

C
add cos  
chengduoZH 已提交
483

D
dzhwinter 已提交
484 485 486
class TestRound(OpTest):
    def setUp(self):
        self.op_type = "round"
487 488 489 490 491 492 493 494
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
495 496 497 498

    def test_check_output(self):
        self.check_output()

499 500 501 502 503 504 505 506 507 508 509 510 511 512
    def init_dtype(self):
        pass


class TestFP16Round(TestRound):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

D
dzhwinter 已提交
513

Q
qijun 已提交
514
class TestRelu(OpTest):
515
    def setUp(self):
Q
qijun 已提交
516
        self.op_type = "relu"
K
Kexin Zhao 已提交
517 518 519 520
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
521 522
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
523 524 525 526
        out = np.maximum(x, 0)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
527 528 529 530 531

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
K
Kexin Zhao 已提交
532 533
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
534
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
535

K
Kexin Zhao 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549
    def init_dtype(self):
        pass


class TestFP16Relu(TestRelu):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

550 551 552 553

class TestBRelu(OpTest):
    def setUp(self):
        self.op_type = "brelu"
554 555 556 557
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
558 559
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
560 561
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
562
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
563 564 565
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
566 567 568

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
569
        self.outputs = {'Out': t}
570 571 572 573 574

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
575 576
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
577
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
578

579 580 581 582 583 584 585 586 587 588 589 590 591 592
    def init_dtype(self):
        pass


class TestFP16BRelu(TestBRelu):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

593

594
class TestRelu6(OpTest):
K
Kavya Srinet 已提交
595
    def setUp(self):
596
        self.op_type = "relu6"
597 598 599 600
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [4, 10]).astype(self.dtype)
601 602 603 604
        threshold = 6.0
        # The same with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
605
        out = np.minimum(np.maximum(x, 0), threshold)
606

607
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
608
        self.attrs = {'threshold': threshold}
609
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
610 611 612 613

    def test_check_output(self):
        self.check_output()

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.02)

    def init_dtype(self):
        pass


class TestFP16Relu6(TestRelu6):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
K
Kavya Srinet 已提交
632 633


634 635 636
class TestSoftRelu(OpTest):
    def setUp(self):
        self.op_type = "soft_relu"
637 638 639 640
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
641
        threshold = 2.0
Q
qijun 已提交
642 643 644
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
        x[np.abs(x + threshold) < 0.005] = -threshold + 0.02
645 646 647
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
648 649 650 651 652
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
653 654 655 656 657

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
658 659
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
660
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
661

662 663 664 665 666 667 668 669 670 671 672 673 674 675
    def init_dtype(self):
        pass


class TestFP16SoftRelu(TestSoftRelu):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

676

677 678 679
class TestELU(OpTest):
    def setUp(self):
        self.op_type = "elu"
680 681 682 683
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
684
        alpha = 1.
685
        out = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
686 687 688 689
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
690
        self.outputs = {'Out': out}
691 692 693 694 695

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
696 697
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
698
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
699

700 701 702 703 704 705 706 707 708 709 710 711 712 713
    def init_dtype(self):
        pass


class TestFP16ELU(TestELU):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

714

Q
qijun 已提交
715 716 717
class TestReciprocal(OpTest):
    def setUp(self):
        self.op_type = "reciprocal"
718 719 720 721 722 723 724 725
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
726 727 728 729 730

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
731 732
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
733
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
734

735 736 737 738 739 740 741 742 743 744 745 746 747 748
    def init_dtype(self):
        pass


class TestFP16Reciprocal(TestReciprocal):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

Q
qijun 已提交
749 750 751 752

class TestLog(OpTest):
    def setUp(self):
        self.op_type = "log"
753 754 755 756 757 758 759 760
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
761 762 763 764 765

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
766 767
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
768
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
769

770 771 772 773 774 775 776 777 778 779 780 781 782 783
    def init_dtype(self):
        pass


class TestFP16Log(TestLog):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

Q
qijun 已提交
784 785 786 787

class TestSquare(OpTest):
    def setUp(self):
        self.op_type = "square"
788 789 790 791 792 793 794 795
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
796 797 798 799 800

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
801 802
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
803
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
804

805 806 807 808 809 810 811 812 813 814 815 816 817 818
    def init_dtype(self):
        pass


class TestFP16Square(TestSquare):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

Q
qijun 已提交
819

820 821 822
class TestPow(OpTest):
    def setUp(self):
        self.op_type = "pow"
823 824 825 826 827 828 829
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
830
        self.attrs = {'factor': 3.0}
831
        self.outputs = {'Out': out}
832 833 834 835 836

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
837 838
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
839
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
840

841 842 843 844 845 846 847 848 849 850 851 852 853 854
    def init_dtype(self):
        pass


class TestFP16Pow(TestPow):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=5e-2)

855 856 857 858

class TestSTanh(OpTest):
    def setUp(self):
        self.op_type = "stanh"
859 860 861 862
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
863 864
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
865 866 867
        out = scale_b * np.tanh(x * scale_a)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
868
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
869
        self.outputs = {'Out': out}
870 871 872 873

    def test_check_output(self):
        self.check_output()

Q
qijun 已提交
874
    def test_check_grad(self):
875 876
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
877
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
878

879 880 881 882 883 884 885 886 887 888 889 890 891 892
    def init_dtype(self):
        pass


class TestFP16STanh(TestSTanh):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

Q
qijun 已提交
893

K
kexinzhao 已提交
894 895 896
class TestSoftplus(OpTest):
    def setUp(self):
        self.op_type = "softplus"
897 898 899 900 901 902 903 904
        self.dtype = np.float64
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 + np.exp(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
kexinzhao 已提交
905 906 907 908 909

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
910 911
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
912
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
K
kexinzhao 已提交
913

914 915 916 917 918 919 920 921 922 923 924 925 926 927
    def init_dtype(self):
        pass


class TestFP16Softplus(TestSoftplus):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

K
kexinzhao 已提交
928

929 930 931
class TestSoftsign(OpTest):
    def setUp(self):
        self.op_type = "softsign"
932 933 934 935 936 937 938 939
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.divide(x, 1 + np.abs(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
940 941 942 943 944

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
945 946
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
947
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
948

949 950 951 952 953 954 955 956 957 958 959 960 961 962
    def init_dtype(self):
        pass


class TestFP16Softsign(TestSoftsign):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

963

964 965 966
class TestThresholdedRelu(OpTest):
    def setUp(self):
        self.op_type = "thresholded_relu"
967 968 969
        self.dtype = np.float32
        self.init_dtype()

970 971
        threshold = 0.25
        self.relative_error = 0.005
972
        X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
973 974 975

        # Same reason as TestAbs
        X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2
976
        out = (X > threshold) * X
977

978
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
979
        self.attrs = {'threshold': threshold}
980
        self.outputs = {'Out': out}
981 982 983 984 985

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
986 987
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
988
        self.check_grad(['X'], 'Out', max_relative_error=self.relative_error)
989

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
    def init_dtype(self):
        pass


class TestFP16ThresholdedRelu(TestThresholdedRelu):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

1004

1005 1006 1007
class TestHardSigmoid(OpTest):
    def setUp(self):
        self.op_type = "hard_sigmoid"
1008 1009 1010
        self.dtype = np.float32
        self.init_dtype()

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
        self.relative_error = 0.002

        X = np.random.uniform(-5, 5, [2, 2]).astype("float32")
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

        # Same reason as TestAbs
        X[np.abs(X - lower_threshold) < self.relative_error] = \
            lower_threshold + 0.2
        X[np.abs(X - upper_threshold) < self.relative_error] = \
            upper_threshold - 0.2

        temp = X * slope + offset
1026 1027 1028 1029
        out = np.maximum(0.0, np.minimum(1.0, temp))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.outputs = {'Out': out}
1030 1031 1032 1033 1034

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
1035 1036
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1037
        self.check_grad(['X'], 'Out', max_relative_error=0.002)
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    def init_dtype(self):
        pass


class TestFP16HardSigmoid(TestHardSigmoid):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

1053

A
Abhinav Arora 已提交
1054 1055 1056
class TestSwish(OpTest):
    def setUp(self):
        self.op_type = "swish"
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
        self.dtype = np.float32
        self.init_dtype()

        X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        beta = 2.3
        out = X * expit(beta * X)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.attrs = {'beta': beta}
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
1067 1068 1069 1070 1071

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
1072 1073
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1074
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
A
Abhinav Arora 已提交
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    def init_dtype(self):
        pass


class TestFP16Swish(TestSwish):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

A
Abhinav Arora 已提交
1090

Q
qijun 已提交
1091 1092
if __name__ == "__main__":
    unittest.main()