shuffle_channel_op.cc 4.2 KB
Newer Older
S
shippingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/shuffle_channel_op.h"

namespace paddle {
namespace operators {

class ShuffleChannelOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
S
shippingwang 已提交
22
    PADDLE_ENFORCE(ctx->HasInput("X"),
S
shippingwang 已提交
23
                   "Input(X) of ShuffleChannelOp should not be null.");
S
shippingwang 已提交
24
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
S
shippingwang 已提交
25 26 27 28 29 30 31
                   "Output(Out) of ShuffleChannelOp should not be null.");

    auto input_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW.");

    ctx->SetOutputDim("Out", input_dims);
  }
S
shippingwang 已提交
32 33 34 35 36 37 38

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::Tensor>("X")->type(),
                                   ctx.device_context());
  }
S
shippingwang 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
};

class ShuffleChannelOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), "
             "the input feature data of ShuffleChannelOp, the layout is NCHW.");
    AddOutput("Out",
              "(Tensor, default Tensor<float>), the output of "
              "ShuffleChannelOp. The layout is NCHW.");
    AddAttr<int>("group", "the number of groups.")
        .SetDefault(1)
        .AddCustomChecker([](const int& group) {
          PADDLE_ENFORCE_GE(group, 1, "group should be larger than 0.");
        });

    AddComment(R"DOC(
		Shuffle Channel operator
S
shippingwang 已提交
58 59 60
		This opearator shuffles the channels of input x.
		It  divide the input channels in each group into several subgroups,
		and obtain a new order by selecting element from every subgroup one by one.
S
shippingwang 已提交
61 62 63 64 65 66 67 68 69

		Shuffle channel operation makes it possible to build more powerful structures
		with multiple group convolutional layers.
		please get more information from the following paper:
		https://arxiv.org/pdf/1707.01083.pdf
        )DOC");
  }
};

S
shippingwang 已提交
70
class ShuffleChannelGradOp : public framework::OperatorWithKernel {
S
shippingwang 已提交
71 72 73 74 75
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
S
shippingwang 已提交
76
                   "Input(Out@Grad) should not be null");
S
shippingwang 已提交
77 78 79 80
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@Grad) should not be null");

    auto input_dims = ctx->GetInputDim("X");
S
shippingwang 已提交
81 82
    PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW.");

S
shippingwang 已提交
83 84
    ctx->SetOutputDim(framework::GradVarName("X"), input_dims);
  }
S
shippingwang 已提交
85 86 87 88 89 90 91

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::Tensor>("X")->type(),
                                   ctx.device_context());
  }
S
shippingwang 已提交
92 93 94 95 96 97
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
S
shippingwang 已提交
98
REGISTER_OPERATOR(shuffle_channel, ops::ShuffleChannelOp,
S
shippingwang 已提交
99 100 101
                  ops::ShuffleChannelOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);

S
shippingwang 已提交
102
REGISTER_OPERATOR(shuffle_channel_grad, ops::ShuffleChannelGradOp);
S
shippingwang 已提交
103 104

REGISTER_OP_CPU_KERNEL(
S
shippingwang 已提交
105
    shuffle_channel,
S
shippingwang 已提交
106 107 108 109
    ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
S
shippingwang 已提交
110
    shuffle_channel_grad,
S
shippingwang 已提交
111 112 113
    ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);