smooth_l1_loss_op.cc 5.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
yangyaming 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
yangyaming 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
yangyaming 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/smooth_l1_loss_op.h"
Y
yangyaming 已提交
16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class SmoothL1LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
25 26
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
Q
Qiao Longfei 已提交
27 28 29

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
yangyaming 已提交
30
    PADDLE_ENFORCE_EQ(x_dims, y_dims);
Q
Qiao Longfei 已提交
31
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
Y
yangyaming 已提交
32
                      "The tensor rank of Input(X) should not be less than 2.");
Q
Qiao Longfei 已提交
33 34 35 36
    if (ctx->HasInput("InsideWeight")) {
      PADDLE_ENFORCE(ctx->HasInput("OutsideWeight"),
                     "If weights are provided, must specify both "
                     "inside and outside weights.");
Y
yangyaming 已提交
37 38
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("InsideWeight"), x_dims);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("OutsideWeight"), x_dims);
Y
yangyaming 已提交
39 40
    }

Q
Qiao Longfei 已提交
41
    ctx->SetOutputDim("Diff", x_dims);
Y
yangyaming 已提交
42
    // loss is a two-rank tensor
Q
Qiao Longfei 已提交
43
    ctx->SetOutputDim("Out", {x_dims[0], 1});
Y
yangyaming 已提交
44 45 46 47 48
  }
};

class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
49
  SmoothL1LossOpMaker(OpProto* proto, OpAttrChecker* op_checker)
Y
yangyaming 已提交
50
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
yangyaming 已提交
51
    AddInput("X",
Y
yangyaming 已提交
52 53 54
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "The input value of smooth l1 loss op with shape "
             "[batch_size, dim1, ..., dimN].");
Y
yangyaming 已提交
55
    AddInput("Y",
Y
yangyaming 已提交
56 57
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "The target value of smooth l1 loss op with same shape as X.");
Y
yangyaming 已提交
58
    AddInput("InsideWeight",
Y
yangyaming 已提交
59 60 61
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "This input is optional and should have same shape with X. "
             "If provided, the result of (X - Y) will be multiplied "
Y
Yang Yang(Tony) 已提交
62 63
             "by this tensor element by element.")
        .AsDispensable();
Y
yangyaming 已提交
64
    AddInput("OutsideWeight",
Y
yangyaming 已提交
65 66 67 68
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
             "This input is optional and should have same shape with X. "
             "If provided, the out smooth l1 loss will be multiplied by this "
             "tensor element by element.")
Y
Yang Yang(Tony) 已提交
69
        .AsDispensable();
Y
yangyaming 已提交
70
    AddOutput("Diff", "Intermediate variable to cache InsideWeight * (X - Y).")
Y
yangyaming 已提交
71
        .AsIntermediate();
Y
yangyaming 已提交
72 73 74
    AddOutput("Out",
              "(Tensor, default Tensor<float>) A tensor with rank be 2. "
              "The output smooth l1 loss with shape [batch_size, 1].");
75 76 77 78
    AddAttr<float>("sigma",
                   "Hyper parameter of smooth l1 loss op."
                   "A float scalar with default value 3.0.")
        .SetDefault(1.0);
Y
yangyaming 已提交
79
    AddComment(R"DOC(
80 81
Smooth L1 Loss Operator.

Y
yangyaming 已提交
82 83
This operator computes the smooth l1 loss for X and Y.
The operator takes the first dimension of X and Y as batch size.
84
For each instance, it computes the smooth l1 loss element by element first
Y
yangyaming 已提交
85
and then sums all the losses. So the shape of Out is [batch_size, 1].
86

Y
yangyaming 已提交
87
The equation is:
Y
yangyaming 已提交
88 89 90 91 92 93 94 95 96 97 98
$$
Out_{\sigma}(X, Y)_i = \begin{cases}
0.5 * (\sigma * (X_i - Y_i)) ^ 2
\quad |X_i - Y_i| \lt \frac{1} {{\sigma} ^ 2} \\
\frac{|X_i - Y_i| - 0.5}{{\sigma}^2},
\quad otherwise
\end{cases}
$$

In the above equation, $Out_{\sigma}(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
element of Out, X and Y.
99

Y
yangyaming 已提交
100 101 102 103 104 105 106 107
)DOC");
  }
};

class SmoothL1LossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

108
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
109 110
    auto in_dims = ctx->GetInputDim("X");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
Y
yangyaming 已提交
111

112
    PADDLE_ENFORCE_GE(out_dims.size(), 2,
Y
yangyaming 已提交
113
                      "The tensor rank of Input(Out@Grad) should be 2.");
Y
yangyaming 已提交
114
    PADDLE_ENFORCE_EQ(out_dims[0], in_dims[0],
Y
yangyaming 已提交
115 116
                      "The 1st dimension of Input(Out@Grad) must be "
                      "same as input.");
Y
yangyaming 已提交
117
    PADDLE_ENFORCE_EQ(out_dims[1], 1,
Y
yangyaming 已提交
118
                      "The 2nd dimension of Input(Out@Grad) must be 1.");
Y
yangyaming 已提交
119

Q
Qiao Longfei 已提交
120 121 122 123 124 125 126 127
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, in_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, in_dims);
    }
Y
yangyaming 已提交
128 129 130 131 132 133 134
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
135 136
REGISTER_OP(smooth_l1_loss, ops::SmoothL1LossOp, ops::SmoothL1LossOpMaker,
            smooth_l1_loss_grad, ops::SmoothL1LossGradOp);
Y
yangyaming 已提交
137
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
138 139
    smooth_l1_loss,
    ops::SmoothL1LossKernel<paddle::platform::CPUDeviceContext, float>);
Y
yangyaming 已提交
140 141
REGISTER_OP_CPU_KERNEL(
    smooth_l1_loss_grad,
Q
QI JUN 已提交
142
    ops::SmoothL1LossGradKernel<paddle::platform::CPUDeviceContext, float>);