bipartite_match_op.cc 9.6 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class BipartiteMatchOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
29 30
    PADDLE_ENFORCE(ctx->HasInput("DistMat"),
                   "Input(DistMat) of BipartiteMatch should not be null.");
D
dangqingqing 已提交
31 32 33 34 35 36
    PADDLE_ENFORCE(
        ctx->HasOutput("ColToRowMatchIndices"),
        "Output(ColToRowMatchIndices) of BipartiteMatch should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("ColToRowMatchDist"),
        "Output(ColToRowMatchDist) of BipartiteMatch should not be null.");
37

D
dangqingqing 已提交
38 39
    auto dims = ctx->GetInputDim("DistMat");
    PADDLE_ENFORCE_EQ(dims.size(), 2, "The rank of Input(DistMat) must be 2.");
40 41

    ctx->SetOutputDim("ColToRowMatchIndices", dims);
D
dangqingqing 已提交
42
    ctx->SetOutputDim("ColToRowMatchDist", dims);
43 44 45 46 47 48 49
  }
};

template <typename T>
class BipartiteMatchKernel : public framework::OpKernel<T> {
 public:
  // The match_indices must be initialized to -1 at first.
50 51 52
  // The match_dist must be initialized to 0 at first.
  void BipartiteMatch(const Tensor& dist, int* match_indices,
                      T* match_dist) const {
53
    constexpr T kEPS = static_cast<T>(1e-6);
54 55 56 57
    PADDLE_ENFORCE_EQ(dist.dims().size(), 2, "The rank of dist must be 2.");
    int64_t row = dist.dims()[0];
    int64_t col = dist.dims()[1];
    auto* dist_data = dist.data<T>();
58 59 60 61 62 63 64
    std::vector<int> row_pool;
    for (int i = 0; i < row; ++i) {
      row_pool.push_back(i);
    }
    while (row_pool.size() > 0) {
      int max_idx = -1;
      int max_row_idx = -1;
65
      T max_dist = -1;
66 67 68 69
      for (int64_t j = 0; j < col; ++j) {
        if (match_indices[j] != -1) {
          continue;
        }
D
dangqingqing 已提交
70
        for (size_t k = 0; k < row_pool.size(); ++k) {
71 72
          int m = row_pool[k];
          // distance is 0 between m-th row and j-th column
73
          if (dist_data[m * col + j] < kEPS) {
74 75
            continue;
          }
76
          if (dist_data[m * col + j] > max_dist) {
77 78
            max_idx = j;
            max_row_idx = m;
79
            max_dist = dist_data[m * col + j];
80 81 82 83 84 85 86 87 88
          }
        }
      }
      if (max_idx == -1) {
        // Cannot find good match.
        break;
      } else {
        PADDLE_ENFORCE_EQ(match_indices[max_idx], -1);
        match_indices[max_idx] = max_row_idx;
89
        match_dist[max_idx] = max_dist;
90 91 92 93 94 95 96
        // Erase the row index.
        row_pool.erase(
            std::find(row_pool.begin(), row_pool.end(), max_row_idx));
      }
    }
  }

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  void ArgMaxMatch(const Tensor& dist, int* match_indices, T* match_dist,
                   T overlap_threshold) const {
    constexpr T kEPS = static_cast<T>(1e-6);
    int64_t row = dist.dims()[0];
    int64_t col = dist.dims()[1];
    auto* dist_data = dist.data<T>();
    for (int64_t j = 0; j < col; ++j) {
      if (match_indices[j] != -1) {
        // the j-th column has been matched to one entity.
        continue;
      }
      int max_row_idx = -1;
      T max_dist = -1;
      for (int i = 0; i < row; ++i) {
        T dist = dist_data[i * col + j];
        if (dist < kEPS) {
          // distance is 0 between m-th row and j-th column
          continue;
        }
        if (dist >= overlap_threshold && dist > max_dist) {
          max_row_idx = i;
          max_dist = dist;
        }
      }
      if (max_row_idx != -1) {
        PADDLE_ENFORCE_EQ(match_indices[j], -1);
        match_indices[j] = max_row_idx;
        match_dist[j] = max_dist;
      }
    }
  }

129
  void Compute(const framework::ExecutionContext& context) const override {
D
dangqingqing 已提交
130
    auto* dist_mat = context.Input<LoDTensor>("DistMat");
131
    auto* match_indices = context.Output<Tensor>("ColToRowMatchIndices");
D
dangqingqing 已提交
132
    auto* match_dist = context.Output<Tensor>("ColToRowMatchDist");
133 134 135

    auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();

136
    auto col = dist_mat->dims()[1];
137

138
    int64_t n = dist_mat->lod().size() == 0UL
139
                    ? 1
140 141 142 143 144
                    : static_cast<int64_t>(dist_mat->lod().back().size() - 1);
    if (dist_mat->lod().size()) {
      PADDLE_ENFORCE_EQ(dist_mat->lod().size(), 1UL,
                        "Only support 1 level of LoD.");
    }
145
    match_indices->mutable_data<int>({n, col}, context.GetPlace());
146
    match_dist->mutable_data<T>({n, col}, context.GetPlace());
147 148 149 150

    math::SetConstant<platform::CPUDeviceContext, int> iset;
    iset(dev_ctx, match_indices, static_cast<int>(-1));
    math::SetConstant<platform::CPUDeviceContext, T> tset;
151
    tset(dev_ctx, match_dist, static_cast<T>(0));
152 153

    int* indices = match_indices->data<int>();
154
    T* dist = match_dist->data<T>();
155 156
    auto type = context.Attr<std::string>("match_type");
    auto threshold = context.Attr<float>("dist_threshold");
157
    if (n == 1) {
158
      BipartiteMatch(*dist_mat, indices, dist);
159 160 161
      if (type == "per_prediction") {
        ArgMaxMatch(*dist_mat, indices, dist, threshold);
      }
162
    } else {
163
      auto lod = dist_mat->lod().back();
164
      for (size_t i = 0; i < lod.size() - 1; ++i) {
165 166
        Tensor one_ins = dist_mat->Slice(lod[i], lod[i + 1]);
        BipartiteMatch(one_ins, indices + i * col, dist + i * col);
167 168 169
        if (type == "per_prediction") {
          ArgMaxMatch(one_ins, indices + i * col, dist + i * col, threshold);
        }
170 171 172 173 174 175 176 177 178 179
      }
    }
  }
};

class BipartiteMatchOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  BipartiteMatchOpMaker(OpProto* proto, OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
D
dangqingqing 已提交
180
        "DistMat",
181 182 183 184
        "(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape "
        "[K, M]. It is pair-wise distance matrix between the entities "
        "represented by each row and each column. For example, assumed one "
        "entity is A with shape [K], another entity is B with shape [M]. The "
D
dangqingqing 已提交
185
        "DistMat[i][j] is the distance between A[i] and B[j]. The bigger "
186
        "the distance is, the better macthing the pairs are. Please note, "
187 188 189
        "This tensor can contain LoD information to represent a batch of "
        "inputs. One instance of this batch can contain different numbers of "
        "entities.");
190 191 192 193 194 195 196 197 198 199 200 201 202
    AddAttr<std::string>(
        "match_type",
        "(string, defalut: per_prediction) "
        "The type of matching method, should be 'bipartite' or "
        "'per_prediction', 'bipartite' by defalut.")
        .SetDefault("bipartite")
        .InEnum({"bipartite", "per_prediction"});
    AddAttr<float>(
        "dist_threshold",
        "(float, defalut: 0.5) "
        "If `match_type` is 'per_prediction', this threshold is to determine "
        "the extra matching bboxes based on the maximum distance.")
        .SetDefault(0.5);
203 204 205 206 207
    AddOutput("ColToRowMatchIndices",
              "(Tensor) A 2-D Tensor with shape [N, M] in int type. "
              "N is the batch size. If ColToRowMatchIndices[i][j] is -1, it "
              "means B[j] does not match any entity in i-th instance. "
              "Otherwise, it means B[j] is matched to row "
208 209
              "ColToRowMatchIndices[i][j] in i-th instance. The row number of "
              "i-th instance is saved in ColToRowMatchIndices[i][j].");
D
dangqingqing 已提交
210
    AddOutput("ColToRowMatchDist",
211 212
              "(Tensor) A 2-D Tensor with shape [N, M] in float type. "
              "N is batch size. If ColToRowMatchIndices[i][j] is -1, "
D
dangqingqing 已提交
213
              "ColToRowMatchDist[i][j] is also -1.0. Otherwise, assumed "
214
              "ColToRowMatchIndices[i][j] = d, and the row offsets of each "
215
              "instance are called LoD. Then "
D
dangqingqing 已提交
216
              "ColToRowMatchDist[i][j] = DistMat[d+LoD[i]][j]");
217 218
    AddComment(R"DOC(
This operator is a greedy bipartite matching algorithm, which is used to
219 220 221 222 223
obtain the matching with the maximum distance based on the input
distance matrix. For input 2D matrix, the bipartite matching algorithm can
find the matched column for each row, also can find the matched row for
each column. And this operator only calculate matched indices from column
to row. For each instance, the number of matched indices is the number of
224
of columns of the input distance matrix.
225 226

There are two outputs to save matched indices and distance.
227
A simple description, this algorithm matched the best (maximum distance)
228 229 230 231
row entity to the column entity and the matched indices are not duplicated
in each row of ColToRowMatchIndices. If the column entity is not matched
any row entity, set -1 in ColToRowMatchIndices.

D
dangqingqing 已提交
232
Please note that the input DistMat can be LoDTensor (with LoD) or Tensor.
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
If Tensor, the height of ColToRowMatchIndices is 1.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(bipartite_match, ops::BipartiteMatchOp,
                  ops::BipartiteMatchOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(bipartite_match, ops::BipartiteMatchKernel<float>,
                       ops::BipartiteMatchKernel<double>);