“a281ca9e1bf37f5c014dbbc24a44e65efdeb36db”上不存在“2.0/documentation20/cn/07.advanced-features/docs.md”
async_executor.cc 11.2 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/async_executor.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"

#include "gflags/gflags.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/executor_thread_worker.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/pybind/pybind.h"
H
pslib  
heqiaozhi 已提交
32
#include "pslib.h"
W
Wang Guibao 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

namespace paddle {
namespace framework {
AsyncExecutor::AsyncExecutor(Scope* scope, const platform::Place& place)
    : root_scope_(scope), place_(place) {}

void AsyncExecutor::CreateThreads(
    ExecutorThreadWorker* worker, const ProgramDesc& main_program,
    const std::shared_ptr<DataFeed>& reader,
    const std::vector<std::string>& fetch_var_names, Scope* root_scope,
    const int thread_index, const bool debug) {
  worker->SetThreadId(thread_index);
  worker->SetDebug(debug);
  worker->SetRootScope(root_scope);
  worker->CreateThreadResource(main_program, place_);
  worker->SetDataFeed(reader);
  worker->SetFetchVarNames(fetch_var_names);
  worker->BindingDataFeedMemory();
51 52 53 54
  worker->SetPSlibPtr(_pslib_ptr);
  worker->SetPullDenseThread(_pull_dense_thread);
  worker->BindingSlotVariableMemory();
  worker->SetParamConfig(&_param_config);
W
Wang Guibao 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67
}

void PrepareReaders(std::vector<std::shared_ptr<DataFeed>>& readers,  // NOLINT
                    const int thread_num, const DataFeedDesc& data_feed_desc,
                    const std::vector<std::string>& filelist) {
  readers.resize(thread_num);
  for (size_t i = 0; i < readers.size(); ++i) {
    readers[i] = DataFeedFactory::CreateDataFeed(data_feed_desc.name());
    readers[i]->Init(data_feed_desc);  // set batch_size and queue_size here
  }
  readers[0]->SetFileList(filelist);
}

H
heqiaozhi 已提交
68
void AsyncExecutor::InitServer(const std::string& dist_desc, int index) {
69
    _pslib_ptr = std::shared_ptr<paddle::distributed::PSlib>(new paddle::distributed::PSlib());
H
heqiaozhi 已提交
70 71 72
    _pslib_ptr->init_server(dist_desc, index);//TODO done

    InitParamConfig();
73 74
}

H
heqiaozhi 已提交
75 76 77 78
void AsyncExecutor::InitWorker(const std::string& dist_desc, std::vector<uint64_t>& host_sign_list, int node_num, int index) {
    _pslib_ptr = std::shared_ptr<paddle::distributed::PSlib>(new paddle::distributed::PSlib());
    _pslib_ptr->init_worker(dist_desc, host_sign_list.data(), node_num, index);//TODO done

H
heqiaozhi 已提交
79
    InitParamConfig();
H
heqiaozhi 已提交
80 81 82 83 84 85 86 87
}

uint64_t AsyncExecutor::StartServer() {
    return _pslib_ptr->run_server();
}

void AsyncExecutor::GatherServers(std::vector<uint64_t>& host_sign_list, int node_num) {
    _pslib_ptr->gather_servers(host_sign_list.data(), node_num);
88 89
}

H
heqiaozhi 已提交
90
void AsyncExecutor::InitParamConfig() {
H
heqiaozhi 已提交
91 92 93 94 95 96
    for (int i = 0; i < _pslib_ptr->get_param()->server_param().downpour_server_param().downpour_table_param_size(); ++i) {
        if (_pslib_ptr->get_param()->server_param().downpour_server_param().downpour_table_param(i).table_class().find("SparseTable") != -1) {
            _param_config.fea_dim = _pslib_ptr->get_param()->server_param().downpour_server_param().downpour_table_param(i).accessor().fea_dim(); //TODO
            break;
        }
    }
H
heqiaozhi 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    _param_config.slot_dim = _param_config.fea_dim - 2; //TODO
    _param_config.tmp_push_dense_wait_times = (int32_t)(_pslib_ptr->get_param()->trainer_param().pull_dense_per_batch());
    _param_config.tmp_push_sparse_wait_times = (int32_t)(_pslib_ptr->get_param()->trainer_param().push_dense_per_batch());
    //sparse
    for (auto t = 0u; t < _pslib_ptr->get_param()->trainer_param().sparse_table_size(); ++t) {
        auto& table = _pslib_ptr->get_param()->trainer_param().sparse_table(t);
        std::vector<std::string> tmp_sparse_variable_name;
        for (int i = 0u; i < table.slot_value_size(); ++i) {
            tmp_sparse_variable_name.push_back(table.slot_value(i));
            _param_config.slot_alias_to_table[table.slot_value(i)] = table.table_id();
        }
        std::vector<std::string> tmp_sparse_gradient_variable_name;
        for (auto i = 0u; i < table.slot_gradient_size(); ++i) {
            tmp_sparse_gradient_variable_name.push_back(
                    table.slot_gradient(i));
        }
        _param_config.slot_input_vec[table.table_id()] = std::move(tmp_sparse_variable_name);
        _param_config.gradient_var[table.table_id()] = std::move(tmp_sparse_gradient_variable_name);
        _param_config.sparse_table_id.push_back(table.table_id());
    }
    //dense
    for (auto t = 0u; t < _pslib_ptr->get_param()->trainer_param().dense_table_size(); ++t) {
        auto& table = _pslib_ptr->get_param()->trainer_param().dense_table(t);
        std::vector<std::string> tmp_dense_variable_name;
        for (int i = 0u; i < table.dense_variable_name_size(); ++i) {
            tmp_dense_variable_name.push_back(table.dense_variable_name(i));
        }
        std::vector<std::string> tmp_dense_gradient_variable_name;
        for (auto i = 0u; i < table.dense_gradient_variable_name_size(); ++i) {
            tmp_dense_gradient_variable_name.push_back(
                    table.dense_gradient_variable_name(i));
        }
        _param_config.dense_variable_name[table.table_id()] = std::move(tmp_dense_variable_name);
        _param_config.dense_gradient_variable_name[table.table_id()] = std::move(tmp_dense_gradient_variable_name);
        _param_config.dense_table_id.push_back(table.table_id());
        _param_config.dense_table_size.push_back(table.fea_dim()); //TODO
    }
}

136 137
void AsyncExecutor::InitModel() {
    //TODO only rank = 0 do this
H
heqiaozhi 已提交
138 139 140
    //std::vector<int> all_dense_table_id; //TODO 
    //all_dense_table_id.push_back(0); //done
    for (auto table_id: _param_config.dense_table_id) {
141
        std::vector<paddle::ps::Region> regions;
H
heqiaozhi 已提交
142 143
        //std::vector<std::string> variables;  //TODO
        for (auto& t : _param_config.dense_variable_name[table_id]) {
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
            Variable* var = root_scope_->FindVar(t);
            CHECK(var != nullptr) << "var[" << t << "] not found";
            LoDTensor* tensor = var->GetMutable<LoDTensor>();

            float* g = tensor->data<float>();
            CHECK(g != nullptr) << "var[" << t << "] value not initialized";

            float init_range = 0.2;
            int rown = tensor->dims()[0];
            init_range /= sqrt(rown);

            std::normal_distribution<float> ndistr(0.0, 1.0);
            for (auto i = 0u; i < tensor->numel(); ++i) {
                g[i] = ndistr(local_random_engine()) * init_range;
            }

            paddle::ps::Region reg(g, tensor->numel());
            regions.emplace_back(std::move(reg));
        }

        auto push_status = _pslib_ptr->_worker_ptr->push_dense_param(regions.data(), regions.size(), table_id);
        push_status.wait();
        auto status = push_status.get();
        if (status != 0) {
            LOG(FATAL) << "push dense param failed, status[" << status << "]";
            exit(-1);
        } 
    }
}

void AsyncExecutor::SaveModel(const std::string& path) {
    auto ret = _pslib_ptr->_worker_ptr->flush();
    ret.wait();
    ret = _pslib_ptr->_worker_ptr->save(path, 0);
    ret.wait();
    int32_t feasign_cnt = ret.get();
    if (feasign_cnt == -1) { // TODO should be feasign_cnt < 0, because server bug
        LOG(FATAL) << "save model failed";
        exit(-1);
    }
}

void AsyncExecutor::PrepareDenseThread() {
    DensePullThreadParam param;
    param.ps_client = _pslib_ptr->_worker_ptr;;
    param.threshold = 1;//GlobalConfig::instance().pull_dense_per_batch; //TODO
    param.training_thread_num = actual_thread_num;
    param.root_scope = root_scope_;
    //param.dense_params = &GlobalConfig::instance().dense_variable_name; //TODO
H
heqiaozhi 已提交
193
    param.dense_params = &_param_config.dense_variable_name;
194 195

    _pull_dense_thread = std::shared_ptr<DensePullThread>(new DensePullThread(param));
H
heqiaozhi 已提交
196
    _pull_dense_thread->start();
197 198 199

}

W
Wang Guibao 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
                                const std::string& data_feed_desc_str,
                                const std::vector<std::string>& filelist,
                                const int thread_num,
                                const std::vector<std::string>& fetch_var_names,
                                const bool debug) {
  std::vector<std::thread> threads;

  auto& block = main_program.Block(0);
  for (auto var_name : fetch_var_names) {
    auto var_desc = block.FindVar(var_name);
    auto shapes = var_desc->GetShape();
    PADDLE_ENFORCE(shapes[shapes.size() - 1] == 1,
                   "var %s: Fetched var has wrong shape, "
                   "only variables with the last dimension size 1 supported",
                   var_name);
  }

  DataFeedDesc data_feed_desc;
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc);

222
  actual_thread_num = thread_num;
W
Wang Guibao 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  int file_cnt = filelist.size();
  PADDLE_ENFORCE(file_cnt > 0, "File list cannot be empty");

  if (actual_thread_num > file_cnt) {
    VLOG(1) << "Thread num = " << thread_num << ", file num = " << file_cnt
            << ". Changing thread_num = " << file_cnt;
    actual_thread_num = file_cnt;
  }

  /*
    readerDesc: protobuf description for reader initlization
    argument: class_name, batch_size, use_slot, queue_size, buffer_size,
    padding_index

    reader:
    1) each thread has a reader, reader will read input data and
    put it into input queue
    2) each reader has a Next() iterface, that can fetch an instance
    from the input queue
   */
  // todo: should be factory method for creating datafeed
  std::vector<std::shared_ptr<DataFeed>> readers;
  PrepareReaders(readers, actual_thread_num, data_feed_desc, filelist);
246
  PrepareDenseThread();
W
Wang Guibao 已提交
247 248 249
  std::vector<std::shared_ptr<ExecutorThreadWorker>> workers;
  workers.resize(actual_thread_num);
  for (auto& worker : workers) {
250
    worker.reset(new AsyncExecutorThreadWorker);
W
Wang Guibao 已提交
251 252 253 254 255 256 257 258
  }

  // prepare thread resource here
  for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
    CreateThreads(workers[thidx].get(), main_program, readers[thidx],
                  fetch_var_names, root_scope_, thidx, debug);
  }

H
heqiaozhi 已提交
259
  
W
Wang Guibao 已提交
260 261 262 263 264 265 266 267 268
  // start executing ops in multiple threads
  for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
    threads.push_back(
        std::thread(&ExecutorThreadWorker::TrainFiles, workers[thidx].get()));
  }

  for (auto& th : threads) {
    th.join();
  }
269
  _pull_dense_thread->stop();
W
Wang Guibao 已提交
270 271 272 273 274 275 276
  root_scope_->DropKids();

  return;
}

}  // einit_modelnd namespace framework
}  // end namespace paddle