fluid_benchmark.py 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import cProfile
import time
import os

import numpy as np

import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
import paddle.fluid.transpiler.distribute_transpiler as distribute_transpiler

BENCHMARK_MODELS = [
    "machine_translation", "resnet", "vgg", "mnist", "stacked_dynamic_lstm"
]


def parse_args():
    parser = argparse.ArgumentParser('Fluid model benchmarks.')
    parser.add_argument(
        '--model',
        type=str,
        choices=BENCHMARK_MODELS,
        default='resnet',
        help='The model to run benchmark with.')
    parser.add_argument(
        '--batch_size', type=int, default=32, help='The minibatch size.')
    parser.add_argument(
        '--learning_rate',
        type=float,
        default=0.001,
        help='The minibatch size.')
    # TODO(wuyi): add "--use_fake_data" option back.
    parser.add_argument(
        '--skip_batch_num',
        type=int,
        default=5,
        help='The first num of minibatch num to skip, for better performance test'
    )
    parser.add_argument(
        '--iterations', type=int, default=80, help='The number of minibatches.')
    parser.add_argument(
        '--pass_num', type=int, default=100, help='The number of passes.')
    parser.add_argument(
        '--data_format',
        type=str,
        default='NCHW',
        choices=['NCHW', 'NHWC'],
        help='The data data_format, now only support NCHW.')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help='The device type.')
    parser.add_argument(
        '--gpus',
        type=int,
        default=1,
        help='If gpus > 1, will use ParallelExecutor to run, else use Executor.')
    parser.add_argument(
        '--data_set',
        type=str,
        default='flowers',
        choices=['cifar10', 'flowers'],
        help='Optional dataset for benchmark.')
    parser.add_argument(
        '--infer_only', action='store_true', help='If set, run forward only.')
    parser.add_argument(
        '--use_cprof', action='store_true', help='If set, use cProfile.')
    parser.add_argument(
        '--use_nvprof',
        action='store_true',
        help='If set, use nvprof for CUDA.')
    parser.add_argument(
        '--no_test',
        action='store_false',
        help='If set, test the testset during training.')
    parser.add_argument(
        '--memory_optimize',
        action='store_true',
        help='If set, optimize runtime memory before start.')
97 98 99 100
    parser.add_argument(
        '--use_fake_data',
        action='store_true',
        help='If set ommit the actual read data operators.')
X
Xin Pan 已提交
101 102
    parser.add_argument(
        '--profile', action='store_true', help='If set, profile a few steps.')
103 104 105 106 107 108 109 110 111 112
    parser.add_argument(
        '--update_method',
        type=str,
        default='local',
        choices=['local', 'pserver', 'nccl2'],
        help='Choose parameter update method, can be local, pserver, nccl2.')
    args = parser.parse_args()
    return args


X
Xin Pan 已提交
113 114
def append_nccl2_prepare(trainer_id):
    if trainer_id >= 0:
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        # append gen_nccl_id at the end of startup program
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        port = os.getenv("PADDLE_PSERVER_PORT")
        worker_ips = os.getenv("PADDLE_TRAINER_IPS")
        worker_endpoints = []
        for ip in worker_ips.split(","):
            worker_endpoints.append(':'.join([ip, port]))
        num_trainers = len(worker_endpoints)
        current_endpoint = os.getenv("PADDLE_CURRENT_IP") + ":" + port
        worker_endpoints.remove(current_endpoint)

        nccl_id_var = fluid.default_startup_program().global_block().create_var(
            name="NCCLID",
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW)
        fluid.default_startup_program().global_block().append_op(
            type="gen_nccl_id",
            inputs={},
            outputs={"NCCLID": nccl_id_var},
            attrs={
                "endpoint": current_endpoint,
                "endpoint_list": worker_endpoints,
                "trainer_id": trainer_id
            })
        return nccl_id_var, num_trainers, trainer_id
    else:
X
Xin Pan 已提交
141 142
        raise Exception("must set positive PADDLE_TRAINER_ID env variables for "
                        "nccl-based dist train.")
143 144


X
Xin Pan 已提交
145 146
def dist_transpile(trainer_id):
    if trainer_id < 0:
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
        return None, None

    # the port of all pservers, needed by both trainer and pserver
    port = os.getenv("PADDLE_PSERVER_PORT", "6174")
    # comma separated ips of all pservers, needed by trainer and
    # pserver
    pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
    eplist = []
    for ip in pserver_ips.split(","):
        eplist.append(':'.join([ip, port]))
    pserver_endpoints = ",".join(eplist)
    # total number of workers/trainers in the job, needed by
    # trainer and pserver
    trainers = int(os.getenv("PADDLE_TRAINERS"))
    # the IP of the local machine, needed by pserver only
    current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
    # the role, should be either PSERVER or TRAINER
    training_role = os.getenv("PADDLE_TRAINING_ROLE")

    t = distribute_transpiler.DistributeTranspiler()
    t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
    if training_role == "PSERVER":
        pserver_program = t.get_pserver_program(current_endpoint)
        pserver_startup_program = t.get_startup_program(current_endpoint,
                                                        pserver_program)
        return pserver_program, pserver_startup_program
    elif training_role == "TRAINER":
        train_program = t.get_trainer_program()
        return train_program, fluid.default_startup_program()
    else:
        raise ValueError(
            'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
        )


def test(exe, inference_program, test_reader, feeder, batch_acc):
    accuracy_evaluator = fluid.metrics.Accuracy()
    for batch_id, data in enumerate(test_reader()):
        acc = exe.run(inference_program,
                      feed=feeder.feed(data),
                      fetch_list=[batch_acc])
        accuracy_evaluator.update(value=np.array(acc), weight=len(data))

    return accuracy_evaluator.eval()


# TODO(wuyi): replace train, train_parallel, test functions with new trainer
# API once it is ready.
def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
          args, train_prog, startup_prog):
    if os.getenv("PADDLE_TRAINING_ROLE") == "PSERVER":
        place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        exe.run(train_prog)
        return

204 205 206 207
    if args.use_fake_data:
        raise Exception(
            "fake data is not supported in single GPU test for now.")

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(startup_prog)
    feed_var_list = [
        var for var in train_prog.global_block().vars.itervalues()
        if var.is_data
    ]
    feeder = fluid.DataFeeder(feed_var_list, place)

    iters, num_samples, start_time = 0, 0, time.time()
    for pass_id in range(args.pass_num):
        train_losses = []
        for batch_id, data in enumerate(train_reader()):
            if iters == args.skip_batch_num:
                start_time = time.time()
                num_samples = 0
            if iters == args.iterations:
                break
            loss = exe.run(train_prog,
                           feed=feeder.feed(data),
                           fetch_list=[avg_loss])
            iters += 1
            num_samples += len(data)
            train_losses.append(loss)
            print("Pass: %d, Iter: %d, Loss: %f\n" %
                  (pass_id, iters, np.mean(train_losses)))
        train_elapsed = time.time() - start_time
        examples_per_sec = num_samples / train_elapsed
        print('\nTotal examples: %d, total time: %.5f, %.5f examples/sec\n' %
              (num_samples, train_elapsed, examples_per_sec))
        print("Pass: %d, Loss: %f" % (pass_id, np.mean(train_losses)))
        # evaluation
        if not args.no_test and batch_acc != None:
            pass_test_acc = test(exe, infer_prog, test_reader, feeder,
                                 batch_acc)
            print(", Test Accuracy: %f" % pass_test_acc)
        print("\n")
        # TODO(wuyi): add warmup passes to get better perf data.
        exit(0)


# TODO(wuyi): replace train, train_parallel, test functions with new trainer
# API once it is ready.
def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
                   batch_acc, args, train_prog, startup_prog, nccl_id_var,
                   num_trainers, trainer_id):
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    feed_var_list = [
        var for var in train_prog.global_block().vars.itervalues()
        if var.is_data
    ]
    # generate fake:
    if args.use_fake_data:
        for var in feed_var_list:
            v = startup_prog.global_block().clone_variable(var)
            var.persistable = True
            v.persistable = True

            real_shape = list(var.shape)
            real_shape[0] = args.batch_size / args.gpus
            startup_prog.global_block().append_op(
                outputs={"Out": v},
                type="fill_constant",
                attrs={"shape": real_shape,
                       "value": 1.0,
                       "dtype": var.dtype})

274
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
275 276 277 278
    if nccl_id_var and trainer_id == 0:
        #FIXME(wuyi): wait other trainer to start listening
        time.sleep(30)

279 280 281 282 283 284 285 286 287 288 289
    startup_exe = fluid.Executor(place)
    startup_exe.run(startup_prog)
    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = 1
    strategy.allow_op_delay = False
    exe = fluid.ParallelExecutor(
        True,
        avg_loss.name,
        exec_strategy=strategy,
        num_trainers=num_trainers,
        trainer_id=trainer_id)
290

291 292 293 294 295 296
    feeder = fluid.DataFeeder(feed_var_list, place)
    for pass_id in range(args.pass_num):
        num_samples = 0
        iters = 0
        start_time = time.time()
        for batch_id, data in enumerate(train_reader()):
X
Xin Pan 已提交
297 298 299 300 301
            if args.profile and pass_id == 0 and batch_id == 5:
                profiler.start_profiler("All")
            elif args.profile and pass_id == 0 and batch_id == 10:
                profiler.stop_profiler("total", "/tmp/profile_%d" % trainer_id)

302 303 304 305 306
            if iters == args.skip_batch_num:
                start_time = time.time()
                num_samples = 0
            if iters == args.iterations:
                break
307 308 309 310
            if args.use_fake_data:
                loss, = exe.run([avg_loss.name])
            else:
                loss, = exe.run([avg_loss.name], feed=feeder.feed(data))
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
            if args.update_method == "pserver":
                exe.bcast_params()
            num_samples += len(data)
            iters += 1
            if batch_id % 1 == 0:
                print("Pass %d, batch %d, loss %s" %
                      (pass_id, batch_id, np.array(loss)))
        train_elapsed = time.time() - start_time
        examples_per_sec = num_samples / train_elapsed
        print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
              (num_samples, train_elapsed, examples_per_sec))
        if not args.no_test and batch_acc != None:
            test_acc = test(startup_exe, infer_prog, test_reader, feeder,
                            batch_acc)
            print("Pass: %d, Test Accuracy: %f\n" % (pass_id, test_acc))
        exit(0)


def print_arguments(args):
    vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
                                vars(args)['device'] == 'GPU')
    print('----------- resnet Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


def main():
    args = parse_args()
    print_arguments(args)
X
Xin Pan 已提交
341 342 343 344 345

    # the unique trainer id, starting from 0, needed by trainer
    # only
    nccl_id_var, num_trainers, trainer_id = (
        None, 1, int(os.getenv("PADDLE_TRAINER_ID", "-1")))
346 347 348 349 350 351 352 353 354 355 356 357 358

    if args.use_cprof:
        pr = cProfile.Profile()
        pr.enable()
    model_def = __import__("models.%s" % args.model, fromlist=["models"])
    train_args = list(model_def.get_model(args))
    train_args.append(args)
    # Run optimizer.minimize(avg_loss)
    train_args[2].minimize(train_args[0])
    if args.memory_optimize:
        fluid.memory_optimize(fluid.default_main_program())

    if args.update_method == "pserver":
X
Xin Pan 已提交
359
        train_prog, startup_prog = dist_transpile(trainer_id)
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
        if not train_prog:
            raise Exception(
                "Must configure correct environments to run dist train.")
        train_args.extend([train_prog, startup_prog])
        if args.gpus > 1 and os.getenv("PADDLE_TRAINING_ROLE") == "TRAINER":
            train_args.extend([nccl_id_var, num_trainers, trainer_id])
            train_parallel(*train_args)
        train(*train_args)
        exit(0)

    # for other update methods, use default programs
    train_args.append(fluid.default_main_program())
    train_args.append(fluid.default_startup_program())

    if args.update_method == "nccl2":
X
Xin Pan 已提交
375
        nccl_id_var, num_trainers, trainer_id = append_nccl2_prepare(trainer_id)
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    if args.gpus == 1:
        # NOTE: parallel executor use profiler interanlly
        if args.use_nvprof and args.device == 'GPU':
            with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
                train(*train_args)
        else:
            train(*train_args)
    else:
        if args.device == "CPU":
            raise Exception("Only support GPU perf with parallel exe")
        train_args.extend([nccl_id_var, num_trainers, trainer_id])
        train_parallel(*train_args)


if __name__ == "__main__":
    main()