run_mkl_train.sh 1.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
set -e

function train() {
  unset OMP_NUM_THREADS MKL_NUM_THREADS OMP_DYNAMIC KMP_AFFINITY
  topology=$1
  layer_num=$2
  bs=$3
  use_mkldnn=$4
  if [ $4 == "True" ]; then
    thread=1
    log="logs/train-${topology}-${layer_num}-mkldnn-${bs}.log"
  elif [ $4 == "False" ]; then
    thread=`nproc`
    # each trainer_count use only 1 core to avoid conflict
    log="logs/train-${topology}-${layer_num}-${thread}mklml-${bs}.log"
  else
    echo "Wrong input $4, use True or False."
    exit 0
  fi
  args="batch_size=${bs},layer_num=${layer_num}"
  config="${topology}.py"
  paddle train --job=time \
    --config=$config \
    --use_mkldnn=$use_mkldnn \
    --use_gpu=False \
    --trainer_count=$thread \
    --log_period=10 \
    --test_period=100 \
    --config_args=$args \
    2>&1 | tee ${log} 
31 32 33 34

  avg_time=`tail ${log} -n 1 | awk -F ' ' '{print $8}' | sed 's/avg=//'`
  fps=`awk 'BEGIN{printf "%.2f",('$bs' / '$avg_time' * 1000)}'`
  echo "FPS: $fps images/sec" 2>&1 | tee -a ${log}
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
}

if [ ! -f "train.list" ]; then
  echo " " > train.list
fi
if [ ! -d "logs" ]; then
  mkdir logs
fi

# training benchmark
for use_mkldnn in True False; do
  for batchsize in 64 128 256; do
    train vgg 19 $batchsize $use_mkldnn
    train resnet 50 $batchsize $use_mkldnn
    train googlenet v1 $batchsize $use_mkldnn
T
tensor-tang 已提交
50
    train alexnet group2 $batchsize $use_mkldnn
51 52
  done
done