lstm_op.h 15.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2

D
dangqingqing 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dangqingqing 已提交
6

D
dangqingqing 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
D
dangqingqing 已提交
8

D
dangqingqing 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dangqingqing 已提交
14 15

#pragma once
16
#include <string>
Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
18
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
19 20 21
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
D
dangqingqing 已提交
22 23 24 25

namespace paddle {
namespace operators {

D
dangqingqing 已提交
26 27 28
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;

Q
QI JUN 已提交
29 30
template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
D
dzhwinter 已提交
31 32
                             const framework::Tensor& src,
                             framework::Vector<size_t> index_lod,
D
dangqingqing 已提交
33
                             framework::Tensor* dst, bool indexed_src) {
Q
QI JUN 已提交
34
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
D
dangqingqing 已提交
35
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
36
  row_shuffle(ctx, src, index_lod, dst, indexed_src);
D
dangqingqing 已提交
37 38
}

Q
QI JUN 已提交
39
template <typename DeviceContext, typename T>
D
dangqingqing 已提交
40 41
class LSTMKernel : public framework::OpKernel<T> {
 public:
D
dangqingqing 已提交
42
  void Compute(const framework::ExecutionContext& ctx) const override {
D
dangqingqing 已提交
43 44 45
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* weight = ctx.Input<Tensor>("Weight");
    auto* bias = ctx.Input<Tensor>("Bias");
46

47 48 49
    auto* hidden_t0 = ctx.Input<Tensor>("H0");
    auto* cell_t0 = ctx.Input<Tensor>("C0");

D
dangqingqing 已提交
50
    auto* batch_gate = ctx.Output<LoDTensor>("BatchGate");
51
    batch_gate->mutable_data<T>(ctx.GetPlace());
D
dangqingqing 已提交
52
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
53
    hidden_out->mutable_data<T>(ctx.GetPlace());
D
dangqingqing 已提交
54
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
55 56
    cell_out->mutable_data<T>(ctx.GetPlace());

57
    bool is_reverse = ctx.Attr<bool>("is_reverse");
Q
QI JUN 已提交
58 59
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    auto& device_ctx = ctx.template device_context<DeviceContext>();
60
    to_batch(device_ctx, *input, batch_gate, true, is_reverse);
61 62

    auto in_dims = input->dims();
Y
Yu Yang 已提交
63
    int frame_size = static_cast<int>(in_dims[1] / 4);
64
    framework::DDim dims({in_dims[0], frame_size});
D
dangqingqing 已提交
65

66
    if (bias) {
67 68 69
      Tensor b = *bias;
      b.Resize({bias->numel(), 1});
      Tensor gate_bias = b.Slice(0, 4 * frame_size);
Q
QI JUN 已提交
70
      math::RowwiseAdd<DeviceContext, T> add_bias;
71
      add_bias(device_ctx, *batch_gate, gate_bias, batch_gate);
72 73 74
    }

    math::LstmMetaValue<T> lstm_value;
D
dangqingqing 已提交
75
    if (bias && ctx.Attr<bool>("use_peepholes")) {
D
dangqingqing 已提交
76 77
      T* bias_data = const_cast<T*>(bias->data<T>());
      // the code style in LstmMetaValue will be updated later.
78

79 80 81
      lstm_value.check_ig = bias_data + 4 * frame_size;
      lstm_value.check_fg = lstm_value.check_ig + frame_size;
      lstm_value.check_og = lstm_value.check_fg + frame_size;
D
dangqingqing 已提交
82
    } else {
83 84 85
      lstm_value.check_ig = nullptr;
      lstm_value.check_fg = nullptr;
      lstm_value.check_og = nullptr;
D
dangqingqing 已提交
86
    }
87
    lstm_value.prev_state_value = nullptr;
88
    Tensor ordered_c0;
D
dzhwinter 已提交
89 90 91

    framework::Vector<size_t> order(batch_gate->lod()[2]);

92
    if (cell_t0) {
D
dangqingqing 已提交
93 94 95
      // Since the batch computing for LSTM reorders the input sequence
      // according to their length. The initialized cell state also needs
      // to reorder.
Q
QI JUN 已提交
96 97
      ReorderInitState<DeviceContext, T>(device_ctx, *cell_t0, order,
                                         &ordered_c0, true);
98
      lstm_value.prev_state_value = ordered_c0.data<T>();
99
    }
100

D
dangqingqing 已提交
101 102
    // Use the local variable as here.
    LoDTensor batch_hidden, batch_cell;
103
    auto* batch_cell_pre_act = ctx.Output<LoDTensor>("BatchCellPreAct");
D
dangqingqing 已提交
104
    batch_hidden.mutable_data<T>(dims, ctx.GetPlace());
105
    batch_cell.mutable_data<T>(dims, ctx.GetPlace());
106
    batch_cell_pre_act->mutable_data<T>(dims, ctx.GetPlace());
107

D
dangqingqing 已提交
108
    auto batch_starts = batch_gate->lod()[0];
Y
Yu Yang 已提交
109
    size_t num_batch = batch_starts.size() - 1;
110 111 112 113 114 115
    auto gate_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("gate_activation"));
    auto cell_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("cell_activation"));
    auto cand_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("candidate_activation"));
116

Y
Yu Yang 已提交
117
    auto blas = math::GetBlas<DeviceContext, T>(device_ctx);
Y
Yu Yang 已提交
118 119 120
    for (size_t n = 0; n < num_batch; n++) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
121

D
dangqingqing 已提交
122
      Tensor gate_t = batch_gate->Slice(bstart, bend);
D
dangqingqing 已提交
123
      Tensor out_t = batch_hidden.Slice(bstart, bend);
D
dangqingqing 已提交
124
      Tensor cell_t = batch_cell.Slice(bstart, bend);
125
      Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend);
126 127 128

      int cur_batch_size = bend - bstart;

129
      if (n > 0) {
Y
Yu Yang 已提交
130
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
D
dangqingqing 已提交
131
        int pre_h_end = pre_h_start + cur_batch_size;
D
dangqingqing 已提交
132
        auto pre_hidden_t = batch_hidden.Slice(pre_h_start, pre_h_end);
Y
Yu Yang 已提交
133 134
        blas.MatMul(pre_hidden_t, false, *weight, false, static_cast<T>(1.0),
                    &gate_t, static_cast<T>(1.0));
135
      } else if (hidden_t0) {
D
dangqingqing 已提交
136 137 138 139 140 141 142
        // If n == 0 and there is no initialized hidden state, that is to say
        // the H0 is zeros, the calculation W_h * H0 will be skiped.
        // If n == 0 and there is initialized hidden state, calculate W_h * H0.

        // Since the batch computing for LSTM reorders the input sequence
        // according to their length. The initialized hidden state also needs
        // to reorder.
143
        Tensor ordered_h0;
Q
QI JUN 已提交
144 145
        ReorderInitState<DeviceContext, T>(device_ctx, *hidden_t0, order,
                                           &ordered_h0, true);
Y
Yu Yang 已提交
146 147
        blas.MatMul(ordered_h0, false, *weight, false, static_cast<T>(1.0),
                    &gate_t, static_cast<T>(1.0));
148 149
      }

150 151 152 153
      lstm_value.gate_value = gate_t.data<T>();
      lstm_value.output_value = out_t.data<T>();
      lstm_value.state_value = cell_t.data<T>();
      lstm_value.state_active_value = cell_pre_act_t.data<T>();
Q
QI JUN 已提交
154 155 156
      math::LstmUnitFunctor<DeviceContext, T>::compute(
          device_ctx, lstm_value, frame_size, cur_batch_size, gate_act,
          cell_act, cand_act);
157
      lstm_value.prev_state_value = lstm_value.state_value;
D
dangqingqing 已提交
158
    }
159

Q
QI JUN 已提交
160
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
D
dangqingqing 已提交
161
    batch_hidden.set_lod(batch_gate->lod());
162
    // restore the output hidden in LoDTensor from the batch hidden
163
    to_seq(device_ctx, batch_hidden, hidden_out);
164

165
    batch_cell.set_lod(batch_gate->lod());
166
    // restore the output cell state in LoDTensor from the batch cell
167
    to_seq(device_ctx, batch_cell, cell_out);
D
dangqingqing 已提交
168
  }
D
dangqingqing 已提交
169 170
};

Q
QI JUN 已提交
171
template <typename DeviceContext, typename T>
D
dangqingqing 已提交
172 173
class LSTMGradKernel : public framework::OpKernel<T> {
 public:
D
dangqingqing 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* weight = ctx.Input<Tensor>("Weight");
    auto* bias = ctx.Input<Tensor>("Bias");

    auto* hidden_out = ctx.Input<LoDTensor>("Hidden");
    auto* cell_out = ctx.Input<LoDTensor>("Cell");

    auto* batch_gate = ctx.Input<LoDTensor>("BatchGate");
    auto* batch_cell_pre_act = ctx.Input<LoDTensor>("BatchCellPreAct");

    auto* hidden_g = ctx.Input<LoDTensor>(framework::GradVarName("Hidden"));

    auto* in_g = ctx.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* weight_g = ctx.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_g = ctx.Output<Tensor>(framework::GradVarName("Bias"));

191 192 193 194 195 196
    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");

    auto* h0_g = ctx.Output<Tensor>(framework::GradVarName("H0"));
    auto* c0_g = ctx.Output<Tensor>(framework::GradVarName("C0"));

Q
QI JUN 已提交
197 198
    auto& device_ctx = ctx.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> zero;
D
dangqingqing 已提交
199
    if (weight_g) {
200
      weight_g->mutable_data<T>(ctx.GetPlace());
D
dangqingqing 已提交
201 202 203
      zero(device_ctx, weight_g, static_cast<T>(0.0));
    }

D
dangqingqing 已提交
204 205 206
    // ordered_h0/c0 is the reordered hidden/cell initialization.
    // ordered_h0_g/c0_g is the reordered gradient of hidden/cell
    // initialization.
207
    Tensor ordered_h0, ordered_c0, ordered_h0_g, ordered_c0_g;
D
dzhwinter 已提交
208 209
    framework::Vector<size_t> order(batch_gate->lod()[2]);

210
    if (c0) {
Q
QI JUN 已提交
211 212
      ReorderInitState<DeviceContext, T>(device_ctx, *c0, order, &ordered_c0,
                                         true);
D
dangqingqing 已提交
213 214 215
    }
    if (c0 && c0_g) {
      ordered_c0_g.mutable_data<T>(c0_g->dims(), ctx.GetPlace());
216 217
    }

D
dangqingqing 已提交
218 219 220 221 222 223
    auto in_dims = input->dims();
    auto out_dims = hidden_g->dims();
    int frame_size = static_cast<int>(in_dims[1] / 4);
    PADDLE_ENFORCE_EQ(frame_size, out_dims[1]);

    math::LstmMetaValue<T> lstm_value;
D
dangqingqing 已提交
224
    if (bias && ctx.Attr<bool>("use_peepholes")) {
D
dangqingqing 已提交
225
      T* bias_data = const_cast<T*>(bias->data<T>());
226 227 228
      lstm_value.check_ig = bias_data + 4 * frame_size;
      lstm_value.check_fg = lstm_value.check_ig + frame_size;
      lstm_value.check_og = lstm_value.check_fg + frame_size;
D
dangqingqing 已提交
229
    } else {
230 231 232
      lstm_value.check_ig = nullptr;
      lstm_value.check_fg = nullptr;
      lstm_value.check_og = nullptr;
D
dangqingqing 已提交
233 234 235
    }

    math::LstmMetaGrad<T> lstm_grad;
D
dangqingqing 已提交
236

D
dangqingqing 已提交
237
    if (bias && bias_g) {
D
dangqingqing 已提交
238
      bias_g->mutable_data<T>(ctx.GetPlace());
239
      zero(device_ctx, bias_g, static_cast<T>(0.0));
D
dangqingqing 已提交
240 241 242
    }
    if (bias && bias_g && ctx.Attr<bool>("use_peepholes")) {
      T* bias_g_data = bias_g->data<T>();
243 244 245
      lstm_grad.check_ig_grad = bias_g_data + 4 * frame_size;
      lstm_grad.check_fg_grad = lstm_grad.check_ig_grad + frame_size;
      lstm_grad.check_og_grad = lstm_grad.check_fg_grad + frame_size;
D
dangqingqing 已提交
246
    } else {
247 248 249
      lstm_grad.check_ig_grad = nullptr;
      lstm_grad.check_fg_grad = nullptr;
      lstm_grad.check_og_grad = nullptr;
D
dangqingqing 已提交
250 251
    }

Q
QI JUN 已提交
252
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
D
dangqingqing 已提交
253

D
dangqingqing 已提交
254
    auto ToBatch = [&batch_gate, &to_batch](
Q
QI JUN 已提交
255
        const DeviceContext& ctx, const framework::LoDTensor& src,
D
dangqingqing 已提交
256 257 258
        const framework::DDim& dims, framework::LoDTensor& dst) {
      dst.mutable_data<T>(dims, ctx.GetPlace());
      dst.set_lod(batch_gate->lod());
259
      to_batch(ctx, src, &dst, false);
D
dangqingqing 已提交
260
    };
D
dangqingqing 已提交
261

D
dangqingqing 已提交
262 263 264 265
    LoDTensor batch_hidden, batch_hidden_g, batch_cell;
    ToBatch(device_ctx, *hidden_out, out_dims, batch_hidden);
    ToBatch(device_ctx, *hidden_g, out_dims, batch_hidden_g);
    ToBatch(device_ctx, *cell_out, out_dims, batch_cell);
D
dangqingqing 已提交
266

D
dangqingqing 已提交
267
    LoDTensor batch_cell_g, batch_gate_g;
D
dangqingqing 已提交
268
    batch_cell_g.mutable_data<T>(out_dims, ctx.GetPlace());
269
    // TODO(qingqing) support the case output cell has gradient.
D
dangqingqing 已提交
270
    // to_batch(device_ctx, *cell_g, batch_cell_g, false);
271
    zero(device_ctx, &batch_cell_g, static_cast<T>(0.0));
D
dangqingqing 已提交
272 273 274
    batch_gate_g.mutable_data<T>(batch_gate->dims(), ctx.GetPlace());
    batch_gate_g.set_lod(batch_gate->lod());

275 276 277 278 279 280
    auto gate_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("gate_activation"));
    auto cell_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("cell_activation"));
    auto cand_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("candidate_activation"));
D
dangqingqing 已提交
281 282 283

    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
Y
Yu Yang 已提交
284
    auto blas = math::GetBlas<DeviceContext, T>(device_ctx);
285
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
D
dangqingqing 已提交
286 287 288 289 290 291
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);

      Tensor gate = batch_gate->Slice(bstart, bend);
      Tensor cell = batch_cell.Slice(bstart, bend);
      Tensor cell_pre_act = batch_cell_pre_act->Slice(bstart, bend);
292 293 294
      lstm_value.gate_value = gate.data<T>();
      lstm_value.state_value = cell.data<T>();
      lstm_value.state_active_value = cell_pre_act.data<T>();
D
dangqingqing 已提交
295 296 297 298

      Tensor out_g = batch_hidden_g.Slice(bstart, bend);
      Tensor gate_g = batch_gate_g.Slice(bstart, bend);
      Tensor cell_g = batch_cell_g.Slice(bstart, bend);
299 300 301
      lstm_grad.state_grad = cell_g.data<T>();
      lstm_grad.gate_grad = gate_g.data<T>();
      lstm_grad.output_grad = out_g.data<T>();
D
dangqingqing 已提交
302

303
      if (n > 0) {
D
dangqingqing 已提交
304 305 306
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor cell_pre = batch_cell.Slice(bstart_pre, bstart);
        Tensor cell_pre_g = batch_cell_g.Slice(bstart_pre, bstart);
307 308
        lstm_value.prev_state_value = cell_pre.data<T>();
        lstm_grad.prev_state_grad = cell_pre_g.data<T>();
D
dangqingqing 已提交
309
      } else {
310 311
        lstm_value.prev_state_value = c0 ? ordered_c0.data<T>() : nullptr;
        lstm_grad.prev_state_grad = c0_g ? ordered_c0_g.data<T>() : nullptr;
D
dangqingqing 已提交
312 313
      }

L
liuhongyu 已提交
314 315 316 317
      // lstm_value.output_value not used in bp, set to null
      // lstm_grad.state_active_grad not used in bp, set to null
      lstm_value.output_value = nullptr;
      lstm_grad.state_active_grad = nullptr;
D
dangqingqing 已提交
318
      int cur_batch_size = bend - bstart;
Q
QI JUN 已提交
319
      math::LstmUnitGradFunctor<DeviceContext, T>::compute(
D
dangqingqing 已提交
320 321 322
          device_ctx, lstm_value, lstm_grad, frame_size, cur_batch_size,
          gate_act, cell_act, cand_act);

323
      if (n > 0) {
D
dangqingqing 已提交
324 325 326
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
        int pre_h_end = pre_h_start + cur_batch_size;
        auto pre_hidden_g = batch_hidden_g.Slice(pre_h_start, pre_h_end);
Y
Yu Yang 已提交
327 328
        blas.MatMul(gate_g, false, *weight, true, static_cast<T>(1.0),
                    &pre_hidden_g, static_cast<T>(1.0));
D
dangqingqing 已提交
329 330 331
        if (weight_g) {
          /* backward weight */
          auto pre_hidden = batch_hidden.Slice(pre_h_start, pre_h_end);
Y
Yu Yang 已提交
332 333
          blas.MatMul(pre_hidden, true, gate_g, false, static_cast<T>(1.0),
                      weight_g, static_cast<T>(1.0));
D
dangqingqing 已提交
334
        }
335 336
      } else {
        if (h0 && weight_g) {
Q
QI JUN 已提交
337 338
          ReorderInitState<DeviceContext, T>(device_ctx, *h0, order,
                                             &ordered_h0, true);
Y
Yu Yang 已提交
339 340
          blas.MatMul(ordered_h0, true, gate_g, false, static_cast<T>(1.0),
                      weight_g, static_cast<T>(1.0));
341 342 343
        }
        if (h0 && h0_g) {
          ordered_h0_g.mutable_data<T>(h0_g->dims(), ctx.GetPlace());
Y
Yu Yang 已提交
344 345
          blas.MatMul(gate_g, false, *weight, true, static_cast<T>(1.0),
                      &ordered_h0_g, static_cast<T>(0.0));
346
        }
D
dangqingqing 已提交
347 348 349
      }
    }

Q
QI JUN 已提交
350
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
D
dangqingqing 已提交
351 352
    if (in_g) {
      /* backward data */
353
      in_g->mutable_data<T>(ctx.GetPlace());
354
      to_seq(device_ctx, batch_gate_g, in_g);
D
dangqingqing 已提交
355 356 357
    }
    if (bias && bias_g) {
      /* backward bias */
358 359 360
      Tensor b_g = *bias_g;
      b_g.Resize({bias_g->numel(), 1});
      Tensor gate_bias_g = b_g.Slice(0, 4 * frame_size);
Q
QI JUN 已提交
361
      math::ColwiseSum<DeviceContext, T> col_sum;
362
      col_sum(device_ctx, batch_gate_g, &gate_bias_g);
D
dangqingqing 已提交
363
    }
364 365

    if (h0 && h0_g) {
Q
QI JUN 已提交
366 367
      ReorderInitState<DeviceContext, T>(device_ctx, ordered_h0_g, order, h0_g,
                                         false);
368 369
    }
    if (c0 && c0_g) {
Q
QI JUN 已提交
370 371
      ReorderInitState<DeviceContext, T>(device_ctx, ordered_c0_g, order, c0_g,
                                         false);
372
    }
D
dangqingqing 已提交
373
  }
D
dangqingqing 已提交
374 375 376 377
};

}  // namespace operators
}  // namespace paddle