api_impl.cc 11.1 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22

#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

23
#include "paddle/fluid/framework/feed_fetch_method.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/inference/api/api_impl.h"
D
dzhwinter 已提交
25
#include "paddle/fluid/inference/api/timer.h"
26 27 28
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
X
Xin Pan 已提交
29 30 31

namespace paddle {

32 33 34 35
void NativePaddlePredictor::PrepareFeedFetch() {
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
L
luotao1 已提交
36
      if (feeds_.size() <= (size_t)idx) {
37 38 39 40 41 42
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
L
luotao1 已提交
43
      if (fetchs_.size() <= (size_t)idx) {
44 45 46 47 48 49 50
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

T
tensor-tang 已提交
51 52
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
X
Xin Pan 已提交
53
  VLOG(3) << "Predictor::init()";
D
dzhwinter 已提交
54
#if !defined(_WIN32)
55 56 57 58 59 60 61 62
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }
D
dzhwinter 已提交
63
#endif
D
dzhwinter 已提交
64
  VLOG(3) << "before Place";
Y
Yan Chunwei 已提交
65
  if (config_.use_gpu) {
X
Xin Pan 已提交
66 67 68 69
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
D
dzhwinter 已提交
70
  VLOG(3) << "before scope";
T
tensor-tang 已提交
71 72 73
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
74
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
75
  } else {
D
dzhwinter 已提交
76
    VLOG(3) << "Before InitDevices";
77
    paddle::framework::InitDevices(false);
D
dzhwinter 已提交
78
    VLOG(3) << "after InitDevices";
79 80
    scope_.reset(new paddle::framework::Scope());
  }
D
dzhwinter 已提交
81
  VLOG(3) << "after scope";
X
Xin Pan 已提交
82
  executor_.reset(new paddle::framework::Executor(place_));
D
dzhwinter 已提交
83
  VLOG(3) << "executor";
X
Xin Pan 已提交
84 85 86 87
  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
D
dzhwinter 已提交
88
    VLOG(3) << config_.model_dir;
89 90
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
D
dzhwinter 已提交
91
    VLOG(3) << "load model Finish";
X
Xin Pan 已提交
92 93 94 95
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
D
dzhwinter 已提交
96
    VLOG(3) << "load program";
X
Xin Pan 已提交
97 98
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
D
dzhwinter 已提交
99
    VLOG(3) << "load program finish";
X
Xin Pan 已提交
100 101 102 103
  } else {
    LOG(ERROR) << "fail to load inference model.";
    return false;
  }
D
dzhwinter 已提交
104
  VLOG(3) << "prepare";
X
Xin Pan 已提交
105
  ctx_ = executor_->Prepare(*inference_program_, 0);
106 107
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
108

X
Xin Pan 已提交
109
  // Get the feed_target_names and fetch_target_names
110
  PrepareFeedFetch();
X
Xin Pan 已提交
111 112 113
  return true;
}

114
NativePaddlePredictor::~NativePaddlePredictor() {
D
dzhwinter 已提交
115
#if !defined(_WIN32)
116 117 118 119
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
D
dzhwinter 已提交
120
#endif
121 122 123
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
124
}
125

Y
Yan Chunwei 已提交
126
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
127 128
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
X
Xin Pan 已提交
129
  VLOG(3) << "Predictor::predict";
D
dzhwinter 已提交
130
  using Timer = paddle::inference::Timer;
X
Xin Pan 已提交
131 132 133
  Timer timer;
  timer.tic();
  // set feed variable
134
  std::vector<framework::LoDTensor> feeds;
135 136
  framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
X
Xin Pan 已提交
137 138 139 140 141
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  // Run the inference program
  // if share variables, we need not create variables
142
  VLOG(4) << "Run prepared context";
143 144 145
  executor_->RunPreparedContext(ctx_.get(), scope,
                                false, /* don't create local scope each time*/
                                false /* don't create variable eatch time */);
146
  VLOG(4) << "Finish prepared context";
147 148
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
149
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
150 151 152 153 154 155
    return false;
  }
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
  return true;
}

Y
Yan Chunwei 已提交
156
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
X
Xin Pan 已提交
157
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
158 159
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

160
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
161
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
162 163
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
164 165 166 167
#ifdef __clang__
  // fix clang compile error
  return cls;
#else
168 169
  // fix manylinux compile error.
  return std::move(cls);
J
Fix mac  
JiabinYang 已提交
170
#endif
X
Xin Pan 已提交
171 172
}

Y
Yan Chunwei 已提交
173
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
174
                                    framework::Scope *scope) {
X
Xin Pan 已提交
175
  VLOG(3) << "Predictor::set_feed";
176
  if (inputs.size() != feeds_.size()) {
X
Xin Pan 已提交
177 178 179
    LOG(ERROR) << "wrong feed input size.";
    return false;
  }
180
  for (size_t i = 0; i < inputs.size(); ++i) {
181 182
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
183 184
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
185
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
186
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
187
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
188 189 190 191 192 193
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
194
    std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
195
                inputs[i].data.length());
Y
Yan Chunwei 已提交
196 197 198 199 200 201
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
202 203
    int idx = -1;
    if (config_.specify_input_name) {
X
polish  
Xin Pan 已提交
204
      idx = feed_names_[inputs[i].name];
205 206 207 208
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
X
Xin Pan 已提交
209 210 211
  }
  return true;
}
L
luotao1 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224
template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                        PaddleTensor *output) {
  std::vector<int> shape;
  auto dims_i = fetch.dims();
  auto lod = fetch.lod();
  const T *output_ptr = fetch.data<T>();
  auto num = fetch.numel();
  std::vector<T> data;
  if (0 == lod.size()) {
    std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
    for (int j = 0; j < dims_i.size(); ++j) {
      shape.push_back(dims_i[j]);
X
Xin Pan 已提交
225
    }
L
luotao1 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
  } else {
    // for batch detection
    // image[0] -> output[0] shape {145, 6}
    // image[1] -> output[1] shape {176, 6}
    // then,
    // the batch output shape {321, 6}
    // the lod {{0, 145, 321}}
    // so we should append output[0] to {176, 6}
    size_t max_dim = 0;
    for (size_t j = 1; j < lod[0].size(); j++) {
      max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
    }
    size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
    if (max_dim > 0) {
      data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
    }
    for (size_t j = 1; j < lod[0].size(); j++) {
      size_t start = lod[0][j - 1] * common_dim;
      size_t end = lod[0][j] * common_dim;
      if (end > start) {
        std::copy(output_ptr + start, output_ptr + end,
                  data.begin() + (j - 1) * max_dim * common_dim);
X
Xin Pan 已提交
248 249
      }
    }
L
luotao1 已提交
250 251 252 253
    shape.push_back(lod[0].size() - 1);
    shape.push_back(max_dim);
    for (int j = 1; j < dims_i.size(); ++j) {
      shape.push_back(dims_i[j]);
254
    }
L
luotao1 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267
  }

  output->shape = shape;
  auto &buffer = output->data;
  if (buffer.empty() || buffer.length() < sizeof(T) * data.size()) {
    buffer.Resize(sizeof(T) * data.size());
  }
  std::memcpy(buffer.data(), data.data(), buffer.length());
  // copy LoD
  for (const auto &level : fetch.lod()) {
    output->lod.emplace_back(level);
  }
}
X
Xin Pan 已提交
268

269 270
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                     framework::Scope *scope) {
X
Xin Pan 已提交
271
  VLOG(3) << "Predictor::get_fetch";
272 273 274
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
L
luotao1 已提交
275 276
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
277
        framework::GetFetchVariable(*scope, "fetch", idx);
L
luotao1 已提交
278 279 280 281 282 283 284 285
    auto type = fetch.type();
    auto output = &(outputs->at(i));
    if (type == typeid(float)) {
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
    } else if (type == typeid(int64_t)) {
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
X
Xin Pan 已提交
286
    } else {
L
luotao1 已提交
287
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
Y
Yan Chunwei 已提交
288
    }
X
Xin Pan 已提交
289 290 291 292
  }
  return true;
}

293
template <>
294 295
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
Y
Yan Chunwei 已提交
296 297 298
  VLOG(3) << "create NativePaddlePredictor";
  if (config.use_gpu) {
    // 1. GPU memeroy
D
dzhwinter 已提交
299 300 301 302 303
    VLOG(3) << "before check";
   // PADDLE_ENFORCE_GT(
    //    config.fraction_of_gpu_memory, 0.f,
    //    "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
    VLOG(3) << "failed on first";
304
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
D
dzhwinter 已提交
305
    VLOG(3) << "after flags";
Y
Yan Chunwei 已提交
306 307 308 309 310
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
D
dzhwinter 已提交
311
                         std::to_string(config.fraction_of_gpu_memory);
Y
Yan Chunwei 已提交
312 313 314
      flags.push_back(flag);
      VLOG(3) << "set flag: " << flag;
      framework::InitGflags(flags);
D
dzhwinter 已提交
315
      VLOG(3) << "flags setting";
Y
Yan Chunwei 已提交
316
    }
X
Xin Pan 已提交
317
  }
D
dzhwinter 已提交
318
  VLOG(3) << "Init flags Done";
Y
Yan Chunwei 已提交
319
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
320
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
321 322
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
323
#ifdef __clang__
J
Jiabin Yang 已提交
324
  // fix clang compile error
J
Fix mac  
JiabinYang 已提交
325 326
  return predictor;
#else
327
  return std::move(predictor);
J
Fix mac  
JiabinYang 已提交
328
#endif
X
Xin Pan 已提交
329 330 331
}

}  // namespace paddle