rmsprop_op.h 10.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
S
sneaxiy 已提交
16
#include <math.h>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
19 20 21
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

S
sneaxiy 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
template <typename T>
struct DenseRmspropGradFunctor {
  inline explicit DenseRmspropGradFunctor(const T *grad) : grad_(grad) {}

  HOSTDEVICE inline T operator()(int64_t idx) const { return grad_[idx]; }

  const T *grad_;
};

template <typename T>
struct SparseRmspropGradFunctor {
  inline SparseRmspropGradFunctor(const T *grad, const int64_t *rows,
                                  int64_t row_numel, int64_t row_count)
      : grad_(grad),
        rows_(rows),
        row_numel_(row_numel),
        row_count_(row_count) {}

  HOSTDEVICE inline T operator()(int64_t idx) const {
    auto row_idx = math::BinarySearch(rows_, row_count_, idx / row_numel_);
    return row_idx >= 0 ? grad_[row_idx * row_numel_ + idx % row_numel_] : 0;
  }

  const T *grad_;
  const int64_t *rows_;
  int64_t row_numel_;
  int64_t row_count_;
};

template <typename T, typename GradFunctor>
struct UncenteredRmspropFunctor {
  UncenteredRmspropFunctor(T *param, T *ms, T *mom, const T *lr, T rho,
                           T epsilon, T momentum,
                           const GradFunctor &grad_functor)
      : param_(param),
        ms_(ms),
        mom_(mom),
        lr_(lr),
        rho_(rho),
        epsilon_(epsilon),
        momentum_(momentum),
        grad_functor_(grad_functor) {}

  HOSTDEVICE inline void operator()(int64_t idx) const {
    T g = grad_functor_(idx);
    T ms_out = rho_ * ms_[idx] + (1 - rho_) * g * g;
    T mom_out = momentum_ * mom_[idx] + lr_[0] * g / sqrt(ms_out + epsilon_);
    param_[idx] -= mom_out;
    ms_[idx] = ms_out;
    mom_[idx] = mom_out;
  }

  T *param_;
  T *ms_;
  T *mom_;
  const T *lr_;
  T rho_;
  T epsilon_;
  T momentum_;
  GradFunctor grad_functor_;
};

template <typename T, typename GradFunctor>
struct CenteredRmspropFunctor {
  CenteredRmspropFunctor(T *param, T *ms, T *mom, T *mean_grad, const T *lr,
                         T rho, T epsilon, T momentum,
                         const GradFunctor &grad_functor)
      : param_(param),
        ms_(ms),
        mom_(mom),
        mean_grad_(mean_grad),
        lr_(lr),
        rho_(rho),
        epsilon_(epsilon),
        momentum_(momentum),
        grad_functor_(grad_functor) {}

  HOSTDEVICE inline void operator()(int64_t idx) const {
    T g = grad_functor_(idx);
    T ms_out = rho_ * ms_[idx] + (1 - rho_) * g * g;
    T mg_out = rho_ * mean_grad_[idx] + (1 - rho_) * g;
    T mom_out = momentum_ * mom_[idx] +
                lr_[0] * g / sqrt(ms_out - mg_out * mg_out + epsilon_);
    param_[idx] -= mom_out;
    ms_[idx] = ms_out;
    mom_[idx] = mom_out;
    mean_grad_[idx] = mg_out;
  }

  T *param_;
  T *ms_;
  T *mom_;
  T *mean_grad_;
  const T *lr_;
  T rho_;
  T epsilon_;
  T momentum_;
  GradFunctor grad_functor_;
};

Q
QI JUN 已提交
130
template <typename DeviceContext, typename T>
131 132
class RmspropOpKernel : public framework::OpKernel<T> {
 public:
S
sneaxiy 已提交
133
  void Compute(const framework::ExecutionContext &ctx) const override {
S
sneaxiy 已提交
134
    using LoDTensor = framework::LoDTensor;
S
sneaxiy 已提交
135
    auto *grad_var = ctx.InputVar("Grad");
S
sneaxiy 已提交
136 137 138
    auto *param_out = ctx.Output<LoDTensor>("ParamOut");
    auto *moment_out = ctx.Output<LoDTensor>("MomentOut");
    auto *mean_square_out = ctx.Output<LoDTensor>("MeanSquareOut");
139

S
sneaxiy 已提交
140 141 142 143
    auto epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
    auto rho = static_cast<T>(ctx.Attr<float>("decay"));
    auto momentum = static_cast<T>(ctx.Attr<float>("momentum"));
    bool centered = ctx.Attr<bool>("centered");
144

S
sneaxiy 已提交
145 146 147 148
    auto &p_tensor = *ctx.Input<LoDTensor>("Param");
    auto &ms_tensor = *ctx.Input<LoDTensor>("MeanSquare");
    auto &lr_tensor = *ctx.Input<LoDTensor>("LearningRate");
    auto &mom_tensor = *ctx.Input<LoDTensor>("Moment");
149

S
sneaxiy 已提交
150 151 152 153 154 155 156 157 158 159
    PADDLE_ENFORCE_EQ(&p_tensor, param_out,
                      "Param and ParamOut must be the same Tensor");
    PADDLE_ENFORCE_EQ(&mom_tensor, moment_out,
                      "Moment and MomentOut must be the same Tensor");
    PADDLE_ENFORCE_EQ(&ms_tensor, mean_square_out,
                      "MeanSquare and MeanSquareOut must be the same Tensor");

    auto &dev_ctx = ctx.template device_context<DeviceContext>();
    size_t limit = static_cast<size_t>(ms_tensor.numel());

S
sneaxiy 已提交
160 161
    if (grad_var->IsType<LoDTensor>()) {
      auto &grad_tensor = grad_var->Get<LoDTensor>();
S
sneaxiy 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

      if (std::is_same<DeviceContext, platform::CPUDeviceContext>::value) {
        auto &place =
            *ctx.template device_context<DeviceContext>().eigen_device();
        auto lr_value = lr_tensor.data<T>()[0];

        auto p = EigenVector<T>::Flatten(p_tensor);
        auto ms = EigenVector<T>::Flatten(ms_tensor);
        auto g = EigenVector<T>::Flatten(grad_tensor);
        auto mom = EigenVector<T>::Flatten(mom_tensor);

        auto p_out = EigenVector<T>::Flatten(*param_out);
        auto mom_out = EigenVector<T>::Flatten(*moment_out);
        auto ms_out = EigenVector<T>::Flatten(*mean_square_out);

        ms_out.device(place) = rho * ms + (1 - rho) * g * g;
        if (centered) {
S
sneaxiy 已提交
179
          auto &mg_tensor = *ctx.Input<LoDTensor>("MeanGrad");
S
sneaxiy 已提交
180
          auto mg = EigenVector<T>::Flatten(mg_tensor);
S
sneaxiy 已提交
181
          auto *mean_grad_out = ctx.Output<LoDTensor>("MeanGradOut");
S
sneaxiy 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
          PADDLE_ENFORCE(&mg_tensor, mean_grad_out,
                         "MeanGrad and MeanGradOut must be the same Tensor");
          auto mg_out = EigenVector<T>::Flatten(*mean_grad_out);

          mg_out.device(place) = rho * mg + (1 - rho) * g;
          mom_out.device(place) =
              momentum * mom +
              lr_value * g / (ms_out - mg_out.square() + epsilon).sqrt();
        } else {
          mom_out.device(place) =
              momentum * mom + lr_value * g / (ms_out + epsilon).sqrt();
        }
        p_out.device(place) = p - mom_out;
      } else {
        DenseRmspropGradFunctor<T> grad_func(grad_tensor.data<T>());
        platform::ForRange<DeviceContext> for_range(dev_ctx, limit);
        if (centered) {
S
sneaxiy 已提交
199 200
          auto &mg_tensor = *ctx.Input<LoDTensor>("MeanGrad");
          auto *mean_grad_out = ctx.Output<LoDTensor>("MeanGradOut");
S
sneaxiy 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
          PADDLE_ENFORCE(&mg_tensor, mean_grad_out,
                         "MeanGrad and MeanGradOut must be the same Tensor");
          for_range(CenteredRmspropFunctor<T, DenseRmspropGradFunctor<T>>(
              param_out->mutable_data<T>(ctx.GetPlace()),
              mean_square_out->mutable_data<T>(ctx.GetPlace()),
              moment_out->mutable_data<T>(ctx.GetPlace()),
              mean_grad_out->mutable_data<T>(ctx.GetPlace()),
              lr_tensor.data<T>(), rho, epsilon, momentum, grad_func));
        } else {
          for_range(UncenteredRmspropFunctor<T, DenseRmspropGradFunctor<T>>(
              param_out->mutable_data<T>(ctx.GetPlace()),
              mean_square_out->mutable_data<T>(ctx.GetPlace()),
              moment_out->mutable_data<T>(ctx.GetPlace()), lr_tensor.data<T>(),
              rho, epsilon, momentum, grad_func));
        }
      }
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      auto &grad = grad_var->Get<framework::SelectedRows>();
      auto *merged_grad = const_cast<framework::Scope &>(ctx.scope())
                              .Var()
                              ->GetMutable<framework::SelectedRows>();

      math::scatter::MergeAdd<DeviceContext, T> merge_func;
      merge_func(dev_ctx, grad, merged_grad);

      platform::ForRange<DeviceContext> for_range(dev_ctx, limit);
      const int64_t *rows;
#ifdef PADDLE_WITH_CUDA
      if (platform::is_gpu_place(ctx.GetPlace())) {
        rows = merged_grad->rows().CUDAData(ctx.GetPlace());
      } else {
#endif
        rows = merged_grad->rows().data();
#ifdef PADDLE_WITH_CUDA
      }
#endif
      auto &merged_tensor = merged_grad->value();
      int64_t row_count = merged_grad->rows().size();
      int64_t row_numel = merged_tensor.numel() / row_count;
      SparseRmspropGradFunctor<T> grad_func(merged_tensor.data<T>(), rows,
                                            row_numel, row_count);
242

S
sneaxiy 已提交
243
      if (centered) {
S
sneaxiy 已提交
244 245
        auto &mg_tensor = *ctx.Input<LoDTensor>("MeanGrad");
        auto *mean_grad_out = ctx.Output<LoDTensor>("MeanGradOut");
S
sneaxiy 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        PADDLE_ENFORCE(&mg_tensor, mean_grad_out,
                       "MeanGrad and MeanGradOut must be the same Tensor");
        for_range(CenteredRmspropFunctor<T, SparseRmspropGradFunctor<T>>(
            param_out->mutable_data<T>(ctx.GetPlace()),
            mean_square_out->mutable_data<T>(ctx.GetPlace()),
            moment_out->mutable_data<T>(ctx.GetPlace()),
            mean_grad_out->mutable_data<T>(ctx.GetPlace()), lr_tensor.data<T>(),
            rho, epsilon, momentum, grad_func));
      } else {
        for_range(UncenteredRmspropFunctor<T, SparseRmspropGradFunctor<T>>(
            param_out->mutable_data<T>(ctx.GetPlace()),
            mean_square_out->mutable_data<T>(ctx.GetPlace()),
            moment_out->mutable_data<T>(ctx.GetPlace()), lr_tensor.data<T>(),
            rho, epsilon, momentum, grad_func));
      }
261
    } else {
S
sneaxiy 已提交
262
      PADDLE_THROW("RMSProp only supports LoDTensor or SelectedRows gradient");
263
    }
264 265 266 267 268
  }
};

}  // namespace operators
}  // namespace paddle