export_utils.py 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import yaml
from collections import OrderedDict

import logging
logger = logging.getLogger(__name__)

import paddle.fluid as fluid

__all__ = ['dump_infer_config', 'save_infer_model']

# Global dictionary
TRT_MIN_SUBGRAPH = {
    'YOLO': 3,
    'SSD': 3,
    'RCNN': 40,
    'RetinaNet': 40,
36
    'S2ANet': 40,
37 38 39
    'EfficientDet': 40,
    'Face': 3,
    'TTFNet': 3,
40
    'FCOS': 33,
41
    'SOLOv2': 60,
42 43 44 45
}
RESIZE_SCALE_SET = {
    'RCNN',
    'RetinaNet',
46
    'S2ANet',
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    'FCOS',
    'SOLOv2',
}


def parse_reader(reader_cfg, metric, arch):
    preprocess_list = []

    image_shape = reader_cfg['inputs_def'].get('image_shape', [3, None, None])
    has_shape_def = not None in image_shape

    dataset = reader_cfg['dataset']
    anno_file = dataset.get_anno()
    with_background = dataset.with_background
    use_default_label = dataset.use_default_label

    if metric == 'COCO':
        from ppdet.utils.coco_eval import get_category_info
    elif metric == "VOC":
        from ppdet.utils.voc_eval import get_category_info
    elif metric == "WIDERFACE":
        from ppdet.utils.widerface_eval_utils import get_category_info
G
Guanghua Yu 已提交
69 70
    elif cfg.metric == 'OID':
        from ppdet.utils.oid_eval import get_category_info
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    else:
        raise ValueError(
            "metric only supports COCO, VOC, WIDERFACE, but received {}".format(
                metric))
    clsid2catid, catid2name = get_category_info(anno_file, with_background,
                                                use_default_label)

    label_list = [str(cat) for cat in catid2name.values()]

    sample_transforms = reader_cfg['sample_transforms']
    for st in sample_transforms[1:]:
        method = st.__class__.__name__
        p = {'type': method.replace('Image', '')}
        params = st.__dict__
        params.pop('_id')
        if p['type'] == 'Resize' and has_shape_def:
            params['target_size'] = min(image_shape[
                1:]) if arch in RESIZE_SCALE_SET else image_shape[1]
            params['max_size'] = max(image_shape[
                1:]) if arch in RESIZE_SCALE_SET else 0
            params['image_shape'] = image_shape[1:]
            if 'target_dim' in params:
                params.pop('target_dim')
        if p['type'] == 'ResizeAndPad':
            assert has_shape_def, "missing input shape"
            p['type'] = 'Resize'
            p['target_size'] = params['target_dim']
            p['max_size'] = params['target_dim']
            p['interp'] = params['interp']
            p['image_shape'] = image_shape[1:]
            preprocess_list.append(p)
            continue
        p.update(params)
        preprocess_list.append(p)
    batch_transforms = reader_cfg.get('batch_transforms', None)
    if batch_transforms:
        methods = [bt.__class__.__name__ for bt in batch_transforms]
        for bt in batch_transforms:
            method = bt.__class__.__name__
            if method == 'PadBatch':
                preprocess_list.append({'type': 'PadStride'})
                params = bt.__dict__
                preprocess_list[-1].update({'stride': params['pad_to_stride']})
                break

    return with_background, preprocess_list, label_list


def dump_infer_config(FLAGS, config):
    arch_state = 0
    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(FLAGS.output_dir, cfg_name)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    from ppdet.core.config.yaml_helpers import setup_orderdict
    setup_orderdict()
    infer_cfg = OrderedDict({
        'use_python_inference': False,
        'mode': 'fluid',
        'draw_threshold': 0.5,
        'metric': config['metric']
    })
    infer_arch = config['architecture']

    for arch, min_subgraph_size in TRT_MIN_SUBGRAPH.items():
        if arch in infer_arch:
            infer_cfg['arch'] = arch
            infer_cfg['min_subgraph_size'] = min_subgraph_size
            arch_state = 1
            break
    if not arch_state:
        logger.error(
            'Architecture: {} is not supported for exporting model now'.format(
                infer_arch))
        os._exit(0)

147 148 149 150
    # support land mark output
    if 'with_lmk' in config and config['with_lmk'] == True:
        infer_cfg['with_lmk'] = True

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    if 'Mask' in config['architecture']:
        infer_cfg['mask_resolution'] = config['MaskHead']['resolution']
    infer_cfg['with_background'], infer_cfg['Preprocess'], infer_cfg[
        'label_list'] = parse_reader(config['TestReader'], config['metric'],
                                     infer_cfg['arch'])

    yaml.dump(infer_cfg, open(os.path.join(save_dir, 'infer_cfg.yml'), 'w'))
    logger.info("Export inference config file to {}".format(
        os.path.join(save_dir, 'infer_cfg.yml')))


def prune_feed_vars(feeded_var_names, target_vars, prog):
    """
    Filter out feed variables which are not in program,
    pruned feed variables are only used in post processing
    on model output, which are not used in program, such
    as im_id to identify image order, im_shape to clip bbox
    in image.
    """
    exist_var_names = []
    prog = prog.clone()
    prog = prog._prune(targets=target_vars)
    global_block = prog.global_block()
    for name in feeded_var_names:
        try:
            v = global_block.var(name)
            exist_var_names.append(str(v.name))
        except Exception:
            logger.info('save_inference_model pruned unused feed '
                        'variables {}'.format(name))
            pass
    return exist_var_names


def save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog):
    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(FLAGS.output_dir, cfg_name)
    feed_var_names = [var.name for var in feed_vars.values()]
    fetch_list = sorted(test_fetches.items(), key=lambda i: i[0])
    target_vars = [var[1] for var in fetch_list]
    feed_var_names = prune_feed_vars(feed_var_names, target_vars, infer_prog)
    logger.info("Export inference model to {}, input: {}, output: "
                "{}...".format(save_dir, feed_var_names,
                               [str(var.name) for var in target_vars]))
    fluid.io.save_inference_model(
        save_dir,
        feeded_var_names=feed_var_names,
        target_vars=target_vars,
        executor=exe,
        main_program=infer_prog,
        params_filename="__params__")