htc_bbox_head.py 10.6 KB
Newer Older
S
sunxl1988 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
M
Manuel Garcia 已提交
20
from paddle.fluid.initializer import Normal
S
sunxl1988 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
from paddle.fluid.regularizer import L2Decay

from ppdet.modeling.ops import MultiClassNMS
from ppdet.modeling.losses import SmoothL1Loss
from ppdet.core.workspace import register

__all__ = ['HTCBBoxHead']


@register
class HTCBBoxHead(object):
    """
    HTC bbox head

    Args:
        head (object): the head module instance
        nms (object): `MultiClassNMS` instance
        num_classes: number of output classes
    """
    __inject__ = ['head', 'nms', 'bbox_loss']
    __shared__ = ['num_classes']

    def __init__(self,
                 head,
                 nms=MultiClassNMS().__dict__,
                 bbox_loss=SmoothL1Loss().__dict__,
                 num_classes=81,
                 lr_ratio=2.0):
        super(HTCBBoxHead, self).__init__()
        self.head = head
        self.nms = nms
        self.bbox_loss = bbox_loss
        self.num_classes = num_classes
        self.lr_ratio = lr_ratio

        if isinstance(nms, dict):
            self.nms = MultiClassNMS(**nms)
        if isinstance(bbox_loss, dict):
            self.bbox_loss = SmoothL1Loss(**bbox_loss)

    def get_output(self,
                   roi_feat,
                   cls_agnostic_bbox_reg=2,
                   wb_scalar=1.0,
                   name=''):
        """
        Get bbox head output.

        Args:
            roi_feat (Variable): RoI feature from RoIExtractor.
            cls_agnostic_bbox_reg(Int): BBox regressor are class agnostic.
            wb_scalar(Float): Weights and Bias's learning rate.
            name(String): Layer's name

        Returns:
            cls_score(Variable): cls score.
            bbox_pred(Variable): bbox regression.
        """
        head_feat = self.head(roi_feat, wb_scalar, name)
        cls_score = fluid.layers.fc(input=head_feat,
                                    size=self.num_classes,
                                    act=None,
                                    name='cls_score' + name,
                                    param_attr=ParamAttr(
                                        name='cls_score%s_w' % name,
                                        initializer=Normal(
                                            loc=0.0, scale=0.01),
                                        learning_rate=wb_scalar),
                                    bias_attr=ParamAttr(
                                        name='cls_score%s_b' % name,
                                        learning_rate=wb_scalar * self.lr_ratio,
                                        regularizer=L2Decay(0.)))
        bbox_pred = fluid.layers.fc(input=head_feat,
                                    size=4 * cls_agnostic_bbox_reg,
                                    act=None,
                                    name='bbox_pred' + name,
                                    param_attr=ParamAttr(
                                        name='bbox_pred%s_w' % name,
                                        initializer=Normal(
                                            loc=0.0, scale=0.001),
                                        learning_rate=wb_scalar),
                                    bias_attr=ParamAttr(
                                        name='bbox_pred%s_b' % name,
                                        learning_rate=wb_scalar * self.lr_ratio,
                                        regularizer=L2Decay(0.)))
        return cls_score, bbox_pred

    def get_loss(self, rcnn_pred_list, rcnn_target_list, rcnn_loss_weight_list):
        """
        Get bbox_head loss.

        Args:
            rcnn_pred_list(List): Cascade RCNN's head's output including
                bbox_pred and cls_score
            rcnn_target_list(List): Cascade rcnn's bbox and label target
            rcnn_loss_weight_list(List): The weight of location and class loss

        Return:
            loss_cls(Variable): bbox_head loss.
            loss_bbox(Variable): bbox_head loss.
        """
        loss_dict = {}
        for i, (rcnn_pred, rcnn_target
                ) in enumerate(zip(rcnn_pred_list, rcnn_target_list)):
            labels_int64 = fluid.layers.cast(x=rcnn_target[1], dtype='int64')
            labels_int64.stop_gradient = True

            loss_cls = fluid.layers.softmax_with_cross_entropy(
                logits=rcnn_pred[0],
                label=labels_int64,
                numeric_stable_mode=True, )
            loss_cls = fluid.layers.reduce_mean(
                loss_cls, name='loss_cls_' + str(i)) * rcnn_loss_weight_list[i]

            loss_bbox = self.bbox_loss(
                x=rcnn_pred[1],
                y=rcnn_target[2],
                inside_weight=rcnn_target[3],
                outside_weight=rcnn_target[4])
            loss_bbox = fluid.layers.reduce_mean(
                loss_bbox,
                name='loss_bbox_' + str(i)) * rcnn_loss_weight_list[i]

            loss_dict['loss_cls_%d' % i] = loss_cls
            loss_dict['loss_loc_%d' % i] = loss_bbox

        return loss_dict

    def get_prediction(self,
                       im_info,
                       im_shape,
                       roi_feat_list,
                       rcnn_pred_list,
                       proposal_list,
                       cascade_bbox_reg_weights,
                       cls_agnostic_bbox_reg=2,
                       return_box_score=False):
        """
        Get prediction bounding box in test stage.
        :
        Args:
            im_info (Variable): A 2-D LoDTensor with shape [B, 3]. B is the
                number of input images, each element consists
                of im_height, im_width, im_scale.
            im_shape (Variable): Actual shape of original image with shape
                [B, 3]. B is the number of images, each element consists of
                original_height, original_width, 1
            rois_feat_list (List): RoI feature from RoIExtractor.
            rcnn_pred_list (Variable): Cascade rcnn's head's output
                including bbox_pred and cls_score
            proposal_list (List): RPN proposal boxes.
            cascade_bbox_reg_weights (List): BBox decode var.
            cls_agnostic_bbox_reg(Int): BBox regressor are class agnostic

        Returns:
            pred_result(Variable): Prediction result with shape [N, 6]. Each
               row has 6 values: [label, confidence, xmin, ymin, xmax, ymax].
               N is the total number of prediction.
        """
        repeat_num = 3
        # cls score 
        boxes_cls_prob_l = []
        for i in range(repeat_num):
            cls_score = rcnn_pred_list[i][0]
            cls_prob = fluid.layers.softmax(cls_score, use_cudnn=False)
            boxes_cls_prob_l.append(cls_prob)

        boxes_cls_prob_mean = fluid.layers.sum(boxes_cls_prob_l) / float(
            len(boxes_cls_prob_l))

        # bbox pred
        im_scale = fluid.layers.slice(im_info, [1], starts=[2], ends=[3])
        bbox_pred_l = []
        for i in range(repeat_num):
            if i < 2:
                continue
            bbox_reg_w = cascade_bbox_reg_weights[i]
            proposals_boxes = proposal_list[i]
            im_scale_lod = fluid.layers.sequence_expand(im_scale,
                                                        proposals_boxes)
            proposals_boxes = proposals_boxes / im_scale_lod
            bbox_pred = rcnn_pred_list[i][1]
            bbox_pred_new = fluid.layers.reshape(bbox_pred,
                                                 (-1, cls_agnostic_bbox_reg, 4))
            bbox_pred_l.append(bbox_pred_new)

        bbox_pred_new = bbox_pred_l[-1]
        if cls_agnostic_bbox_reg == 2:
            # only use fg box delta to decode box
            bbox_pred_new = fluid.layers.slice(
                bbox_pred_new, axes=[1], starts=[1], ends=[2])
            bbox_pred_new = fluid.layers.expand(bbox_pred_new,
                                                [1, self.num_classes, 1])
        decoded_box = fluid.layers.box_coder(
            prior_box=proposals_boxes,
            prior_box_var=bbox_reg_w,
            target_box=bbox_pred_new,
            code_type='decode_center_size',
            box_normalized=False,
            axis=1)

        box_out = fluid.layers.box_clip(input=decoded_box, im_info=im_shape)
        if return_box_score:
            return {'bbox': box_out, 'score': boxes_cls_prob_mean}
        pred_result = self.nms(bboxes=box_out, scores=boxes_cls_prob_mean)
        return {"bbox": pred_result}

    def get_prediction_cls_aware(self,
                                 im_info,
                                 im_shape,
                                 cascade_cls_prob,
                                 cascade_decoded_box,
                                 cascade_bbox_reg_weights,
                                 return_box_score=False):
        '''
        get_prediction_cls_aware: predict bbox for each class
        '''
        cascade_num_stage = 3
        cascade_eval_weight = [0.2, 0.3, 0.5]
        # merge 3 stages results
        sum_cascade_cls_prob = sum([
            prob * cascade_eval_weight[idx]
            for idx, prob in enumerate(cascade_cls_prob)
        ])
        sum_cascade_decoded_box = sum([
            bbox * cascade_eval_weight[idx]
            for idx, bbox in enumerate(cascade_decoded_box)
        ])
        self.im_scale = fluid.layers.slice(im_info, [1], starts=[2], ends=[3])
        im_scale_lod = fluid.layers.sequence_expand(self.im_scale,
                                                    sum_cascade_decoded_box)

        sum_cascade_decoded_box = sum_cascade_decoded_box / im_scale_lod

        decoded_bbox = sum_cascade_decoded_box
        decoded_bbox = fluid.layers.reshape(
            decoded_bbox, shape=(-1, self.num_classes, 4))

        box_out = fluid.layers.box_clip(input=decoded_bbox, im_info=im_shape)
        if return_box_score:
            return {'bbox': box_out, 'score': sum_cascade_cls_prob}
        pred_result = self.nms(bboxes=box_out, scores=sum_cascade_cls_prob)
        return {"bbox": pred_result}