visualize.py 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# coding: utf-8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

K
Kaipeng Deng 已提交
16 17
from __future__ import division

18 19 20 21 22
import cv2
import numpy as np
from PIL import Image, ImageDraw


G
Guanghua Yu 已提交
23 24
def visualize_box_mask(im, results, labels, mask_resolution=14, threshold=0.5):
    """
25 26
    Args:
        im (str/np.ndarray): path of image/np.ndarray read by cv2
G
Guanghua Yu 已提交
27
        results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
28
                        matix element:[class, score, x_min, y_min, x_max, y_max]
G
Guanghua Yu 已提交
29 30
                        MaskRCNN's results include 'masks': np.ndarray:
                        shape:[N, class_num, mask_resolution, mask_resolution]
31 32
        labels (list): labels:['class1', ..., 'classn']
        mask_resolution (int): shape of a mask is:[mask_resolution, mask_resolution]
G
Guanghua Yu 已提交
33
        threshold (float): Threshold of score.
34
    Returns:
G
Guanghua Yu 已提交
35
        im (PIL.Image.Image): visualized image
36
    """
K
Kaipeng Deng 已提交
37
    if isinstance(im, str):
38 39 40 41 42 43 44 45 46 47 48 49
        im = Image.open(im).convert('RGB')
    else:
        im = Image.fromarray(im)
    if 'masks' in results and 'boxes' in results:
        im = draw_mask(
            im,
            results['boxes'],
            results['masks'],
            labels,
            resolution=mask_resolution)
    if 'boxes' in results:
        im = draw_box(im, results['boxes'], labels)
G
Guanghua Yu 已提交
50 51 52 53 54 55 56 57
    if 'segm' in results:
        im = draw_segm(
            im,
            results['segm'],
            results['label'],
            results['score'],
            labels,
            threshold=threshold)
58 59
    if 'landmark' in results:
        im = draw_lmk(im, results['landmark'])
60 61 62 63
    return im


def get_color_map_list(num_classes):
G
Guanghua Yu 已提交
64
    """
65 66 67
    Args:
        num_classes (int): number of class
    Returns:
G
Guanghua Yu 已提交
68
        color_map (list): RGB color list
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    """
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    return color_map


def expand_boxes(boxes, scale=0.0):
G
Guanghua Yu 已提交
85
    """
86
    Args:
G
Guanghua Yu 已提交
87
        boxes (np.ndarray): shape:[N,4], N:number of box,
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
                            matix element:[x_min, y_min, x_max, y_max]
        scale (float): scale of boxes
    Returns:
        boxes_exp (np.ndarray): expanded boxes
    """
    w_half = (boxes[:, 2] - boxes[:, 0]) * .5
    h_half = (boxes[:, 3] - boxes[:, 1]) * .5
    x_c = (boxes[:, 2] + boxes[:, 0]) * .5
    y_c = (boxes[:, 3] + boxes[:, 1]) * .5
    w_half *= scale
    h_half *= scale
    boxes_exp = np.zeros(boxes.shape)
    boxes_exp[:, 0] = x_c - w_half
    boxes_exp[:, 2] = x_c + w_half
    boxes_exp[:, 1] = y_c - h_half
    boxes_exp[:, 3] = y_c + h_half
    return boxes_exp


def draw_mask(im, np_boxes, np_masks, labels, resolution=14, threshold=0.5):
G
Guanghua Yu 已提交
108
    """
109 110
    Args:
        im (PIL.Image.Image): PIL image
G
Guanghua Yu 已提交
111
        np_boxes (np.ndarray): shape:[N,6], N: number of box,
112 113 114 115 116 117
                               matix element:[class, score, x_min, y_min, x_max, y_max]
        np_masks (np.ndarray): shape:[N, class_num, resolution, resolution]
        labels (list): labels:['class1', ..., 'classn']
        resolution (int): shape of a mask is:[resolution, resolution]
        threshold (float): threshold of mask
    Returns:
G
Guanghua Yu 已提交
118
        im (PIL.Image.Image): visualized image
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    """
    color_list = get_color_map_list(len(labels))
    scale = (resolution + 2.0) / resolution
    im_w, im_h = im.size
    w_ratio = 0.4
    alpha = 0.7
    im = np.array(im).astype('float32')
    rects = np_boxes[:, 2:]
    expand_rects = expand_boxes(rects, scale)
    expand_rects = expand_rects.astype(np.int32)
    clsid_scores = np_boxes[:, 0:2]
    padded_mask = np.zeros((resolution + 2, resolution + 2), dtype=np.float32)
    clsid2color = {}
    for idx in range(len(np_boxes)):
        clsid, score = clsid_scores[idx].tolist()
        clsid = int(clsid)
        xmin, ymin, xmax, ymax = expand_rects[idx].tolist()
        w = xmax - xmin + 1
        h = ymax - ymin + 1
        w = np.maximum(w, 1)
        h = np.maximum(h, 1)
        padded_mask[1:-1, 1:-1] = np_masks[idx, int(clsid), :, :]
        resized_mask = cv2.resize(padded_mask, (w, h))
        resized_mask = np.array(resized_mask > threshold, dtype=np.uint8)
        x0 = min(max(xmin, 0), im_w)
        x1 = min(max(xmax + 1, 0), im_w)
        y0 = min(max(ymin, 0), im_h)
        y1 = min(max(ymax + 1, 0), im_h)
        im_mask = np.zeros((im_h, im_w), dtype=np.uint8)
        im_mask[y0:y1, x0:x1] = resized_mask[(y0 - ymin):(y1 - ymin), (
            x0 - xmin):(x1 - xmin)]
        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color_mask = clsid2color[clsid]
        for c in range(3):
            color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
        idx = np.nonzero(im_mask)
        color_mask = np.array(color_mask)
        im[idx[0], idx[1], :] *= 1.0 - alpha
        im[idx[0], idx[1], :] += alpha * color_mask
    return Image.fromarray(im.astype('uint8'))


def draw_box(im, np_boxes, labels):
G
Guanghua Yu 已提交
163
    """
164 165
    Args:
        im (PIL.Image.Image): PIL image
G
Guanghua Yu 已提交
166
        np_boxes (np.ndarray): shape:[N,6], N: number of box,
167 168 169
                               matix element:[class, score, x_min, y_min, x_max, y_max]
        labels (list): labels:['class1', ..., 'classn']
    Returns:
G
Guanghua Yu 已提交
170
        im (PIL.Image.Image): visualized image
171
    """
K
Kaipeng Deng 已提交
172
    draw_thickness = min(im.size) // 320
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    draw = ImageDraw.Draw(im)
    clsid2color = {}
    color_list = get_color_map_list(len(labels))

    for dt in np_boxes:
        clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
        xmin, ymin, xmax, ymax = bbox
        w = xmax - xmin
        h = ymax - ymin
        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color = tuple(clsid2color[clsid])

        # draw bbox
        draw.line(
            [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
             (xmin, ymin)],
            width=draw_thickness,
            fill=color)

        # draw label
J
Jack Zhou 已提交
194
        text = "{} {:.4f}".format(labels[clsid], score)
195 196 197 198 199
        tw, th = draw.textsize(text)
        draw.rectangle(
            [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
        draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
    return im
G
Guanghua Yu 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231


def draw_segm(im,
              np_segms,
              np_label,
              np_score,
              labels,
              threshold=0.5,
              alpha=0.7):
    """
    Draw segmentation on image
    """
    mask_color_id = 0
    w_ratio = .4
    color_list = get_color_map_list(len(labels))
    im = np.array(im).astype('float32')
    clsid2color = {}
    np_segms = np_segms.astype(np.uint8)
    for i in range(np_segms.shape[0]):
        mask, score, clsid = np_segms[i], np_score[i], np_label[i] + 1
        if score < threshold:
            continue

        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color_mask = clsid2color[clsid]
        for c in range(3):
            color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
        idx = np.nonzero(mask)
        color_mask = np.array(color_mask)
        im[idx[0], idx[1], :] *= 1.0 - alpha
        im[idx[0], idx[1], :] += alpha * color_mask
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        sum_x = np.sum(mask, axis=0)
        x = np.where(sum_x > 0.5)[0]
        sum_y = np.sum(mask, axis=1)
        y = np.where(sum_y > 0.5)[0]
        x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
        cv2.rectangle(im, (x0, y0), (x1, y1),
                      tuple(color_mask.astype('int32').tolist()), 1)
        bbox_text = '%s %.2f' % (labels[clsid], score)
        t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
        cv2.rectangle(im, (x0, y0), (x0 + t_size[0], y0 - t_size[1] - 3),
                      tuple(color_mask.astype('int32').tolist()), -1)
        cv2.putText(
            im,
            bbox_text, (x0, y0 - 2),
            cv2.FONT_HERSHEY_SIMPLEX,
            0.3, (0, 0, 0),
            1,
            lineType=cv2.LINE_AA)
G
Guanghua Yu 已提交
250
    return Image.fromarray(im.astype('uint8'))
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297


def lmk2out(bboxes, np_lmk, im_info, threshold=0.5, is_bbox_normalized=True):
    image_w, image_h = im_info['origin_shape']
    scale = im_info['scale']
    face_index, landmark, prior_box = np_lmk[:]
    xywh_res = []
    if bboxes.shape == (1, 1) or bboxes is None:
        return np.array([])
    prior = np.reshape(prior_box, (-1, 4))
    predict_lmk = np.reshape(landmark, (-1, 10))
    k = 0
    for i in range(bboxes.shape[0]):
        score = bboxes[i][1]
        if score < threshold:
            continue
        theindex = face_index[i][0]
        me_prior = prior[theindex, :]
        lmk_pred = predict_lmk[theindex, :]
        prior_h = me_prior[2] - me_prior[0]
        prior_w = me_prior[3] - me_prior[1]
        prior_h_center = (me_prior[2] + me_prior[0]) / 2
        prior_w_center = (me_prior[3] + me_prior[1]) / 2
        lmk_decode = np.zeros((10))
        for j in [0, 2, 4, 6, 8]:
            lmk_decode[j] = lmk_pred[j] * 0.1 * prior_w + prior_h_center
        for j in [1, 3, 5, 7, 9]:
            lmk_decode[j] = lmk_pred[j] * 0.1 * prior_h + prior_w_center

        if is_bbox_normalized:
            lmk_decode = lmk_decode * np.array([
                image_h, image_w, image_h, image_w, image_h, image_w, image_h,
                image_w, image_h, image_w
            ])
        xywh_res.append(lmk_decode)
    return np.asarray(xywh_res)


def draw_lmk(image, lmk_results):
    draw = ImageDraw.Draw(image)
    for lmk_decode in lmk_results:
        for j in range(5):
            x1 = int(round(lmk_decode[2 * j]))
            y1 = int(round(lmk_decode[2 * j + 1]))
            draw.ellipse(
                (x1 - 2, y1 - 2, x1 + 3, y1 + 3), fill='green', outline='green')
    return image