face_head.py 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import paddle
import paddle.nn as nn

M
Manuel Garcia 已提交
18
from ppdet.core.workspace import register
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
from ..layers import AnchorGeneratorSSD


@register
class FaceHead(nn.Layer):
    """
    Head block for Face detection network

    Args:
        num_classes (int): Number of output classes.
        in_channels (int): Number of input channels.
        anchor_generator(object): instance of anchor genertor method.
        kernel_size (int): kernel size of Conv2D in FaceHead.
        padding (int): padding of Conv2D in FaceHead.
        conv_decay (float): norm_decay (float): weight decay for conv layer weights.
        loss (object): loss of face detection model.
    """
    __shared__ = ['num_classes']
    __inject__ = ['anchor_generator', 'loss']

    def __init__(self,
                 num_classes=80,
41
                 in_channels=[96, 96],
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
                 anchor_generator=AnchorGeneratorSSD().__dict__,
                 kernel_size=3,
                 padding=1,
                 conv_decay=0.,
                 loss='SSDLoss'):
        super(FaceHead, self).__init__()
        # add background class
        self.num_classes = num_classes + 1
        self.in_channels = in_channels
        self.anchor_generator = anchor_generator
        self.loss = loss

        if isinstance(anchor_generator, dict):
            self.anchor_generator = AnchorGeneratorSSD(**anchor_generator)

        self.num_priors = self.anchor_generator.num_priors
        self.box_convs = []
        self.score_convs = []
        for i, num_prior in enumerate(self.num_priors):
            box_conv_name = "boxes{}".format(i)
            box_conv = self.add_sublayer(
                box_conv_name,
                nn.Conv2D(
65
                    in_channels=self.in_channels[i],
66 67 68 69 70 71 72 73 74
                    out_channels=num_prior * 4,
                    kernel_size=kernel_size,
                    padding=padding))
            self.box_convs.append(box_conv)

            score_conv_name = "scores{}".format(i)
            score_conv = self.add_sublayer(
                score_conv_name,
                nn.Conv2D(
75
                    in_channels=self.in_channels[i],
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
                    out_channels=num_prior * self.num_classes,
                    kernel_size=kernel_size,
                    padding=padding))
            self.score_convs.append(score_conv)

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    def forward(self, feats, image, gt_bbox=None, gt_class=None):
        box_preds = []
        cls_scores = []
        prior_boxes = []
        for feat, box_conv, score_conv in zip(feats, self.box_convs,
                                              self.score_convs):
            box_pred = box_conv(feat)
            box_pred = paddle.transpose(box_pred, [0, 2, 3, 1])
            box_pred = paddle.reshape(box_pred, [0, -1, 4])
            box_preds.append(box_pred)

            cls_score = score_conv(feat)
            cls_score = paddle.transpose(cls_score, [0, 2, 3, 1])
            cls_score = paddle.reshape(cls_score, [0, -1, self.num_classes])
            cls_scores.append(cls_score)

        prior_boxes = self.anchor_generator(feats, image)

        if self.training:
            return self.get_loss(box_preds, cls_scores, gt_bbox, gt_class,
                                 prior_boxes)
        else:
            return (box_preds, cls_scores), prior_boxes

    def get_loss(self, boxes, scores, gt_bbox, gt_class, prior_boxes):
        return self.loss(boxes, scores, gt_bbox, gt_class, prior_boxes)