operators.py 50.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# function:
#    operators to process sample,
#    eg: decode/resize/crop image

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

23 24 25 26 27 28 29
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence

from numbers import Number

30 31 32 33 34 35 36 37 38 39 40
import uuid
import logging
import random
import math
import numpy as np
import cv2
from PIL import Image, ImageEnhance

from ppdet.core.workspace import serializable

from .op_helper import (satisfy_sample_constraint, filter_and_process,
41 42 43
                        generate_sample_bbox, clip_bbox, data_anchor_sampling,
                        satisfy_sample_constraint_coverage, crop_image_sampling,
                        generate_sample_bbox_square, bbox_area_sampling)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

logger = logging.getLogger(__name__)

registered_ops = []


def register_op(cls):
    registered_ops.append(cls.__name__)
    if not hasattr(BaseOperator, cls.__name__):
        setattr(BaseOperator, cls.__name__, cls)
    else:
        raise KeyError("The {} class has been registered.".format(cls.__name__))
    return serializable(cls)


class BboxError(ValueError):
    pass


class ImageError(ValueError):
    pass


class BaseOperator(object):
    def __init__(self, name=None):
        if name is None:
            name = self.__class__.__name__
        self._id = name + '_' + str(uuid.uuid4())[-6:]

    def __call__(self, sample, context=None):
        """ Process a sample.
        Args:
            sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
            context (dict): info about this sample processing
        Returns:
            result (dict): a processed sample
        """
        return sample

    def __str__(self):
        return str(self._id)


@register_op
class DecodeImage(BaseOperator):
    def __init__(self, to_rgb=True, with_mixup=False):
        """ Transform the image data to numpy format.

        Args:
            to_rgb (bool): whether to convert BGR to RGB
94
            with_mixup (bool): whether or not to mixup image and gt_bbbox/gt_score
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        """

        super(DecodeImage, self).__init__()
        self.to_rgb = to_rgb
        self.with_mixup = with_mixup
        if not isinstance(self.to_rgb, bool):
            raise TypeError("{}: input type is invalid.".format(self))
        if not isinstance(self.with_mixup, bool):
            raise TypeError("{}: input type is invalid.".format(self))

    def __call__(self, sample, context=None):
        """ load image if 'im_file' field is not empty but 'image' is"""
        if 'image' not in sample:
            with open(sample['im_file'], 'rb') as f:
                sample['image'] = f.read()

        im = sample['image']
        data = np.frombuffer(im, dtype='uint8')
        im = cv2.imdecode(data, 1)  # BGR mode, but need RGB mode
        if self.to_rgb:
            im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
        sample['image'] = im

        if 'h' not in sample:
            sample['h'] = im.shape[0]
        if 'w' not in sample:
            sample['w'] = im.shape[1]
        # make default im_info with [h, w, 1]
        sample['im_info'] = np.array(
            [im.shape[0], im.shape[1], 1.], dtype=np.float32)
        # decode mixup image
        if self.with_mixup and 'mixup' in sample:
            self.__call__(sample['mixup'], context)
        return sample


W
wangguanzhong 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
@register_op
class MultiscaleTestResize(BaseOperator):
    def __init__(self,
                 origin_target_size=800,
                 origin_max_size=1333,
                 target_size=[],
                 max_size=2000,
                 interp=cv2.INTER_LINEAR,
                 use_flip=True):
        """
        Rescale image to the each size in target size, and capped at max_size.

        Args:
            origin_target_size(int): original target size of image's short side.
            origin_max_size(int): original max size of image.
            target_size (list): A list of target sizes of image's short side.
            max_size (int): the max size of image.
            interp (int): the interpolation method.
            use_flip (bool): whether use flip augmentation.
        """
        super(MultiscaleTestResize, self).__init__()
        self.origin_target_size = int(origin_target_size)
        self.origin_max_size = int(origin_max_size)
        self.max_size = int(max_size)
        self.interp = int(interp)
        self.use_flip = use_flip

        if not isinstance(target_size, list):
            raise TypeError(
                "Type of target_size is invalid. Must be List, now is {}".
                format(type(target_size)))
        self.target_size = target_size
        if not (isinstance(self.origin_target_size, int) and isinstance(
                self.origin_max_size, int) and isinstance(self.max_size, int)
                and isinstance(self.interp, int)):
            raise TypeError("{}: input type is invalid.".format(self))

    def __call__(self, sample, context=None):
        """ Resize the image numpy for multi-scale test.
        """
        origin_ims = {}
        im = sample['image']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image type is not numpy.".format(self))
        if len(im.shape) != 3:
            raise ImageError('{}: image is not 3-dimensional.'.format(self))
        im_shape = im.shape
        im_size_min = np.min(im_shape[0:2])
        im_size_max = np.max(im_shape[0:2])
        if float(im_size_min) == 0:
            raise ZeroDivisionError('{}: min size of image is 0'.format(self))
        base_name_list = ['image']
        origin_ims['image'] = im
        if self.use_flip:
            sample['flip_image'] = im[:, ::-1, :]
            base_name_list.append('flip_image')
            origin_ims['flip_image'] = sample['flip_image']
        im_info = []
        for base_name in base_name_list:
            im_scale = float(self.origin_target_size) / float(im_size_min)
            # Prevent the biggest axis from being more than max_size
            if np.round(im_scale * im_size_max) > self.origin_max_size:
                im_scale = float(self.origin_max_size) / float(im_size_max)
            im_scale_x = im_scale
            im_scale_y = im_scale

            resize_w = np.round(im_scale_x * float(im_shape[1]))
            resize_h = np.round(im_scale_y * float(im_shape[0]))
            im_resize = cv2.resize(
                origin_ims[base_name],
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
            im_info.extend([resize_h, resize_w, im_scale])
            sample[base_name] = im_resize
            for i, size in enumerate(self.target_size):
                im_scale = float(size) / float(im_size_min)
                if np.round(im_scale * im_size_max) > self.max_size:
                    im_scale = float(self.max_size) / float(im_size_max)
                im_scale_x = im_scale
                im_scale_y = im_scale
                resize_w = np.round(im_scale_x * float(im_shape[1]))
                resize_h = np.round(im_scale_y * float(im_shape[0]))
                im_resize = cv2.resize(
                    origin_ims[base_name],
                    None,
                    None,
                    fx=im_scale_x,
                    fy=im_scale_y,
                    interpolation=self.interp)
                im_info.extend([resize_h, resize_w, im_scale])
                name = base_name + '_scale_' + str(i)
                sample[name] = im_resize
        sample['im_info'] = np.array(im_info, dtype=np.float32)
        return sample


230 231 232 233 234 235 236 237
@register_op
class ResizeImage(BaseOperator):
    def __init__(self,
                 target_size=0,
                 max_size=0,
                 interp=cv2.INTER_LINEAR,
                 use_cv2=True):
        """
238 239 240 241 242
        Rescale image to the specified target size, and capped at max_size
        if max_size != 0.
        If target_size is list, selected a scale randomly as the specified
        target size.

243
        Args:
244
            target_size (int|list): the target size of image's short side,
245
                multi-scale training is adopted when type is list.
246 247
            max_size (int): the max size of image
            interp (int): the interpolation method
248
            use_cv2 (bool): use the cv2 interpolation method or use PIL
249
                interpolation method
250 251 252 253 254
        """
        super(ResizeImage, self).__init__()
        self.max_size = int(max_size)
        self.interp = int(interp)
        self.use_cv2 = use_cv2
255 256 257 258 259 260 261
        if not (isinstance(target_size, int) or isinstance(target_size, list)):
            raise TypeError(
                "Type of target_size is invalid. Must be Integer or List, now is {}".
                format(type(target_size)))
        self.target_size = target_size
        if not (isinstance(self.max_size, int) and isinstance(self.interp,
                                                              int)):
262 263 264
            raise TypeError("{}: input type is invalid.".format(self))

    def __call__(self, sample, context=None):
W
wangguanzhong 已提交
265
        """ Resize the image numpy.
266 267 268 269 270 271 272 273 274
        """
        im = sample['image']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image type is not numpy.".format(self))
        if len(im.shape) != 3:
            raise ImageError('{}: image is not 3-dimensional.'.format(self))
        im_shape = im.shape
        im_size_min = np.min(im_shape[0:2])
        im_size_max = np.max(im_shape[0:2])
275 276 277 278 279
        if isinstance(self.target_size, list):
            # Case for multi-scale training
            selected_size = random.choice(self.target_size)
        else:
            selected_size = self.target_size
280 281 282
        if float(im_size_min) == 0:
            raise ZeroDivisionError('{}: min size of image is 0'.format(self))
        if self.max_size != 0:
283
            im_scale = float(selected_size) / float(im_size_min)
284 285 286 287 288
            # Prevent the biggest axis from being more than max_size
            if np.round(im_scale * im_size_max) > self.max_size:
                im_scale = float(self.max_size) / float(im_size_max)
            im_scale_x = im_scale
            im_scale_y = im_scale
289 290 291

            resize_w = np.round(im_scale_x * float(im_shape[1]))
            resize_h = np.round(im_scale_y * float(im_shape[0]))
W
wangguanzhong 已提交
292 293 294 295 296 297
            im_info = [resize_h, resize_w, im_scale]
            if 'im_info' in sample and sample['im_info'][2] != 1.:
                sample['im_info'] = np.append(
                    list(sample['im_info']), im_info).astype(np.float32)
            else:
                sample['im_info'] = np.array(im_info).astype(np.float32)
298
        else:
299 300
            im_scale_x = float(selected_size) / float(im_shape[1])
            im_scale_y = float(selected_size) / float(im_shape[0])
301 302 303 304

            resize_w = selected_size
            resize_h = selected_size

305 306 307 308 309 310 311 312 313 314
        if self.use_cv2:
            im = cv2.resize(
                im,
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
        else:
            im = Image.fromarray(im)
315
            im = im.resize((resize_w, resize_h), self.interp)
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
            im = np.array(im)

        sample['image'] = im
        return sample


@register_op
class RandomFlipImage(BaseOperator):
    def __init__(self, prob=0.5, is_normalized=False, is_mask_flip=False):
        """
        Args:
            prob (float): the probability of flipping image
            is_normalized (bool): whether the bbox scale to [0,1]
            is_mask_flip (bool): whether flip the segmentation
        """
        super(RandomFlipImage, self).__init__()
        self.prob = prob
        self.is_normalized = is_normalized
        self.is_mask_flip = is_mask_flip
        if not (isinstance(self.prob, float) and
                isinstance(self.is_normalized, bool) and
                isinstance(self.is_mask_flip, bool)):
            raise TypeError("{}: input type is invalid.".format(self))

    def flip_segms(self, segms, height, width):
        def _flip_poly(poly, width):
            flipped_poly = np.array(poly)
            flipped_poly[0::2] = width - np.array(poly[0::2]) - 1
            return flipped_poly.tolist()

        def _flip_rle(rle, height, width):
            if 'counts' in rle and type(rle['counts']) == list:
                rle = mask_util.frPyObjects([rle], height, width)
            mask = mask_util.decode(rle)
            mask = mask[:, ::-1, :]
            rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
            return rle

        def is_poly(segm):
            assert isinstance(segm, (list, dict)), \
                "Invalid segm type: {}".format(type(segm))
            return isinstance(segm, list)

        flipped_segms = []
        for segm in segms:
            if is_poly(segm):
                # Polygon format
                flipped_segms.append([_flip_poly(poly, width) for poly in segm])
            else:
                # RLE format
                import pycocotools.mask as mask_util
                flipped_segms.append(_flip_rle(segm, height, width))
        return flipped_segms

    def __call__(self, sample, context=None):
        """Filp the image and bounding box.
        Operators:
            1. Flip the image numpy.
            2. Transform the bboxes' x coordinates.
              (Must judge whether the coordinates are normalized!)
            3. Transform the segmentations' x coordinates.
              (Must judge whether the coordinates are normalized!)
        Output:
            sample: the image, bounding box and segmentation part
                    in sample are flipped.
        """
        gt_bbox = sample['gt_bbox']
        im = sample['image']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image is not a numpy array.".format(self))
        if len(im.shape) != 3:
            raise ImageError("{}: image is not 3-dimensional.".format(self))
        height, width, _ = im.shape
        if np.random.uniform(0, 1) < self.prob:
            im = im[:, ::-1, :]
            if gt_bbox.shape[0] == 0:
                return sample
            oldx1 = gt_bbox[:, 0].copy()
            oldx2 = gt_bbox[:, 2].copy()
            if self.is_normalized:
                gt_bbox[:, 0] = 1 - oldx2
                gt_bbox[:, 2] = 1 - oldx1
            else:
                gt_bbox[:, 0] = width - oldx2 - 1
                gt_bbox[:, 2] = width - oldx1 - 1
            if gt_bbox.shape[0] != 0 and (gt_bbox[:, 2] < gt_bbox[:, 0]).all():
                m = "{}: invalid box, x2 should be greater than x1".format(self)
                raise BboxError(m)
            sample['gt_bbox'] = gt_bbox
            if self.is_mask_flip and len(sample['gt_poly']) != 0:
                sample['gt_poly'] = self.flip_segms(sample['gt_poly'], height,
                                                    width)
            sample['flipped'] = True
            sample['image'] = im
        return sample


@register_op
class NormalizeImage(BaseOperator):
    def __init__(self,
                 mean=[0.485, 0.456, 0.406],
                 std=[1, 1, 1],
                 is_scale=True,
                 is_channel_first=True):
        """
        Args:
            mean (list): the pixel mean
            std (list): the pixel variance
        """
        super(NormalizeImage, self).__init__()
        self.mean = mean
        self.std = std
        self.is_scale = is_scale
        self.is_channel_first = is_channel_first
        if not (isinstance(self.mean, list) and isinstance(self.std, list) and
                isinstance(self.is_scale, bool)):
            raise TypeError("{}: input type is invalid.".format(self))
        from functools import reduce
        if reduce(lambda x, y: x * y, self.std) == 0:
            raise ValueError('{}: std is invalid!'.format(self))

    def __call__(self, sample, context=None):
        """Normalize the image.
        Operators:
            1.(optional) Scale the image to [0,1]
            2. Each pixel minus mean and is divided by std
        """
W
wangguanzhong 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
        for k in sample.keys():
            if 'image' in k:
                im = sample[k]
                im = im.astype(np.float32, copy=False)
                if self.is_channel_first:
                    mean = np.array(self.mean)[:, np.newaxis, np.newaxis]
                    std = np.array(self.std)[:, np.newaxis, np.newaxis]
                else:
                    mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
                    std = np.array(self.std)[np.newaxis, np.newaxis, :]
                if self.is_scale:
                    im = im / 255.0
                im -= mean
                im /= std
                sample[k] = im
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
        return sample


@register_op
class RandomDistort(BaseOperator):
    def __init__(self,
                 brightness_lower=0.5,
                 brightness_upper=1.5,
                 contrast_lower=0.5,
                 contrast_upper=1.5,
                 saturation_lower=0.5,
                 saturation_upper=1.5,
                 hue_lower=-18,
                 hue_upper=18,
                 brightness_prob=0.5,
                 contrast_prob=0.5,
                 saturation_prob=0.5,
                 hue_prob=0.5,
                 count=4,
                 is_order=False):
        """
        Args:
            brightness_lower/ brightness_upper (float): the brightness
                between brightness_lower and brightness_upper
            contrast_lower/ contrast_upper (float): the contrast between
                contrast_lower and contrast_lower
            saturation_lower/ saturation_upper (float): the saturation
                between saturation_lower and saturation_upper
            hue_lower/ hue_upper (float): the hue between
                hue_lower and hue_upper
            brightness_prob (float): the probability of changing brightness
            contrast_prob (float): the probability of changing contrast
            saturation_prob (float): the probability of changing saturation
            hue_prob (float): the probability of changing hue
            count (int): the kinds of doing distrot
            is_order (bool): whether determine the order of distortion
        """
        super(RandomDistort, self).__init__()
        self.brightness_lower = brightness_lower
        self.brightness_upper = brightness_upper
        self.contrast_lower = contrast_lower
        self.contrast_upper = contrast_upper
        self.saturation_lower = saturation_lower
        self.saturation_upper = saturation_upper
        self.hue_lower = hue_lower
        self.hue_upper = hue_upper
        self.brightness_prob = brightness_prob
        self.contrast_prob = contrast_prob
        self.saturation_prob = saturation_prob
        self.hue_prob = hue_prob
        self.count = count
        self.is_order = is_order

    def random_brightness(self, img):
        brightness_delta = np.random.uniform(self.brightness_lower,
                                             self.brightness_upper)
        prob = np.random.uniform(0, 1)
        if prob < self.brightness_prob:
            img = ImageEnhance.Brightness(img).enhance(brightness_delta)
        return img

    def random_contrast(self, img):
        contrast_delta = np.random.uniform(self.contrast_lower,
                                           self.contrast_upper)
        prob = np.random.uniform(0, 1)
        if prob < self.contrast_prob:
            img = ImageEnhance.Contrast(img).enhance(contrast_delta)
        return img

    def random_saturation(self, img):
        saturation_delta = np.random.uniform(self.saturation_lower,
                                             self.saturation_upper)
        prob = np.random.uniform(0, 1)
        if prob < self.saturation_prob:
            img = ImageEnhance.Color(img).enhance(saturation_delta)
        return img

    def random_hue(self, img):
        hue_delta = np.random.uniform(self.hue_lower, self.hue_upper)
        prob = np.random.uniform(0, 1)
        if prob < self.hue_prob:
            img = np.array(img.convert('HSV'))
            img[:, :, 0] = img[:, :, 0] + hue_delta
            img = Image.fromarray(img, mode='HSV').convert('RGB')
        return img

    def __call__(self, sample, context):
        """random distort the image"""
        ops = [
            self.random_brightness, self.random_contrast,
            self.random_saturation, self.random_hue
        ]
        if self.is_order:
            prob = np.random.uniform(0, 1)
            if prob < 0.5:
                ops = [
                    self.random_brightness,
                    self.random_saturation,
                    self.random_hue,
                    self.random_contrast,
                ]
        else:
            ops = random.sample(ops, self.count)
        assert 'image' in sample, "image data not found"
        im = sample['image']
        im = Image.fromarray(im)
        for id in range(self.count):
            im = ops[id](im)
        im = np.asarray(im)
        sample['image'] = im
        return sample


@register_op
class ExpandImage(BaseOperator):
    def __init__(self, max_ratio, prob, mean=[127.5, 127.5, 127.5]):
        """
        Args:
576
            max_ratio (float): the ratio of expanding
577 578 579 580 581 582 583 584 585 586 587 588
            prob (float): the probability of expanding image
            mean (list): the pixel mean
        """
        super(ExpandImage, self).__init__()
        self.max_ratio = max_ratio
        self.mean = mean
        self.prob = prob

    def __call__(self, sample, context):
        """
        Expand the image and modify bounding box.
        Operators:
589
            1. Scale the image width and height.
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
            2. Construct new images with new height and width.
            3. Fill the new image with the mean.
            4. Put original imge into new image.
            5. Rescale the bounding box.
            6. Determine if the new bbox is satisfied in the new image.
        Returns:
            sample: the image, bounding box are replaced.
        """

        prob = np.random.uniform(0, 1)
        assert 'image' in sample, 'not found image data'
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        im_width = sample['w']
        im_height = sample['h']
        if prob < self.prob:
            if self.max_ratio - 1 >= 0.01:
                expand_ratio = np.random.uniform(1, self.max_ratio)
                height = int(im_height * expand_ratio)
                width = int(im_width * expand_ratio)
                h_off = math.floor(np.random.uniform(0, height - im_height))
                w_off = math.floor(np.random.uniform(0, width - im_width))
                expand_bbox = [
                    -w_off / im_width, -h_off / im_height,
                    (width - w_off) / im_width, (height - h_off) / im_height
                ]
                expand_im = np.ones((height, width, 3))
                expand_im = np.uint8(expand_im * np.squeeze(self.mean))
                expand_im = Image.fromarray(expand_im)
                im = Image.fromarray(im)
                expand_im.paste(im, (int(w_off), int(h_off)))
                expand_im = np.asarray(expand_im)
                gt_bbox, gt_class, _ = filter_and_process(expand_bbox, gt_bbox,
                                                          gt_class)
                sample['image'] = expand_im
                sample['gt_bbox'] = gt_bbox
                sample['gt_class'] = gt_class
                sample['w'] = width
                sample['h'] = height

        return sample


@register_op
class CropImage(BaseOperator):
    def __init__(self, batch_sampler, satisfy_all=False, avoid_no_bbox=True):
        """
        Args:
            batch_sampler (list): Multiple sets of different
                                  parameters for cropping.
            satisfy_all (bool): whether all boxes must satisfy.
            e.g.[[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 1.0],
                 [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]]
           [max sample, max trial, min scale, max scale,
            min aspect ratio, max aspect ratio,
            min overlap, max overlap]
652
            avoid_no_bbox (bool): whether to to avoid the
653
                                  situation where the box does not appear.
654 655 656 657 658 659 660 661 662 663
        """
        super(CropImage, self).__init__()
        self.batch_sampler = batch_sampler
        self.satisfy_all = satisfy_all
        self.avoid_no_bbox = avoid_no_bbox

    def __call__(self, sample, context):
        """
        Crop the image and modify bounding box.
        Operators:
664
            1. Scale the image width and height.
665 666 667 668 669 670 671 672 673 674 675 676
            2. Crop the image according to a radom sample.
            3. Rescale the bounding box.
            4. Determine if the new bbox is satisfied in the new image.
        Returns:
            sample: the image, bounding box are replaced.
        """
        assert 'image' in sample, "image data not found"
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        im_width = sample['w']
        im_height = sample['h']
677 678 679
        gt_score = None
        if 'gt_score' in sample:
            gt_score = sample['gt_score']
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
        sampled_bbox = []
        gt_bbox = gt_bbox.tolist()
        for sampler in self.batch_sampler:
            found = 0
            for i in range(sampler[1]):
                if found >= sampler[0]:
                    break
                sample_bbox = generate_sample_bbox(sampler)
                if satisfy_sample_constraint(sampler, sample_bbox, gt_bbox,
                                             self.satisfy_all):
                    sampled_bbox.append(sample_bbox)
                    found = found + 1
        im = np.array(im)
        while sampled_bbox:
            idx = int(np.random.uniform(0, len(sampled_bbox)))
            sample_bbox = sampled_bbox.pop(idx)
            sample_bbox = clip_bbox(sample_bbox)
            crop_bbox, crop_class, crop_score = \
                filter_and_process(sample_bbox, gt_bbox, gt_class, gt_score)
            if self.avoid_no_bbox:
                if len(crop_bbox) < 1:
                    continue
            xmin = int(sample_bbox[0] * im_width)
            xmax = int(sample_bbox[2] * im_width)
            ymin = int(sample_bbox[1] * im_height)
            ymax = int(sample_bbox[3] * im_height)
            im = im[ymin:ymax, xmin:xmax]
            sample['image'] = im
            sample['gt_bbox'] = crop_bbox
            sample['gt_class'] = crop_class
            sample['gt_score'] = crop_score
            return sample
        return sample


715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
@register_op
class CropImageWithDataAchorSampling(BaseOperator):
    def __init__(self,
                 batch_sampler,
                 anchor_sampler=None,
                 target_size=None,
                 das_anchor_scales=[16, 32, 64, 128],
                 sampling_prob=0.5,
                 min_size=8.,
                 avoid_no_bbox=True):
        """
        Args:
            anchor_sampler (list): anchor_sampling sets of different
                                  parameters for cropping.
            batch_sampler (list): Multiple sets of different
                                  parameters for cropping.
              e.g.[[1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.0]]
                  [[1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
                   [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]]
              [max sample, max trial, min scale, max scale,
               min aspect ratio, max aspect ratio,
               min overlap, max overlap, min coverage, max coverage]
            target_size (bool): target image size.
            das_anchor_scales (list[float]): a list of anchor scales in data
                anchor smapling.
            min_size (float): minimum size of sampled bbox.
            avoid_no_bbox (bool): whether to to avoid the
                                  situation where the box does not appear.
        """
        super(CropImageWithDataAchorSampling, self).__init__()
        self.anchor_sampler = anchor_sampler
        self.batch_sampler = batch_sampler
        self.target_size = target_size
        self.sampling_prob = sampling_prob
        self.min_size = min_size
        self.avoid_no_bbox = avoid_no_bbox
754
        self.das_anchor_scales = np.array(das_anchor_scales)
755 756 757 758 759

    def __call__(self, sample, context):
        """
        Crop the image and modify bounding box.
        Operators:
760
            1. Scale the image width and height.
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
            2. Crop the image according to a radom sample.
            3. Rescale the bounding box.
            4. Determine if the new bbox is satisfied in the new image.
        Returns:
            sample: the image, bounding box are replaced.
        """
        assert 'image' in sample, "image data not found"
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        image_width = sample['w']
        image_height = sample['h']
        gt_score = None
        if 'gt_score' in sample:
            gt_score = sample['gt_score']
        sampled_bbox = []
        gt_bbox = gt_bbox.tolist()

        prob = np.random.uniform(0., 1.)
        if prob > self.sampling_prob:  # anchor sampling
            assert self.anchor_sampler
            for sampler in self.anchor_sampler:
                found = 0
                for i in range(sampler[1]):
                    if found >= sampler[0]:
                        break
                    sample_bbox = data_anchor_sampling(
788 789
                        gt_bbox, image_width, image_height,
                        self.das_anchor_scales, self.target_size)
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
                    if sample_bbox == 0:
                        break
                    if satisfy_sample_constraint_coverage(sampler, sample_bbox,
                                                          gt_bbox):
                        sampled_bbox.append(sample_bbox)
                        found = found + 1
            im = np.array(im)
            while sampled_bbox:
                idx = int(np.random.uniform(0, len(sampled_bbox)))
                sample_bbox = sampled_bbox.pop(idx)

                crop_bbox, crop_class, crop_score = filter_and_process(
                    sample_bbox, gt_bbox, gt_class, gt_score)
                crop_bbox, crop_class, crop_score = bbox_area_sampling(
                    crop_bbox, crop_class, crop_score, self.target_size,
                    self.min_size)

                if self.avoid_no_bbox:
                    if len(crop_bbox) < 1:
                        continue
                im = crop_image_sampling(im, sample_bbox, image_width,
                                         image_height, self.target_size)
                sample['image'] = im
                sample['gt_bbox'] = crop_bbox
                sample['gt_class'] = crop_class
                sample['gt_score'] = crop_score
                return sample
            return sample

        else:
            for sampler in self.batch_sampler:
                found = 0
                for i in range(sampler[1]):
                    if found >= sampler[0]:
                        break
                    sample_bbox = generate_sample_bbox_square(
                        sampler, image_width, image_height)
                    if satisfy_sample_constraint_coverage(sampler, sample_bbox,
                                                          gt_bbox):
                        sampled_bbox.append(sample_bbox)
                        found = found + 1
            im = np.array(im)
            while sampled_bbox:
                idx = int(np.random.uniform(0, len(sampled_bbox)))
                sample_bbox = sampled_bbox.pop(idx)
                sample_bbox = clip_bbox(sample_bbox)

                crop_bbox, crop_class, crop_score = filter_and_process(
                    sample_bbox, gt_bbox, gt_class, gt_score)
                # sampling bbox according the bbox area
                crop_bbox, crop_class, crop_score = bbox_area_sampling(
                    crop_bbox, crop_class, crop_score, self.target_size,
                    self.min_size)

                if self.avoid_no_bbox:
                    if len(crop_bbox) < 1:
                        continue
                xmin = int(sample_bbox[0] * image_width)
                xmax = int(sample_bbox[2] * image_width)
                ymin = int(sample_bbox[1] * image_height)
                ymax = int(sample_bbox[3] * image_height)
                im = im[ymin:ymax, xmin:xmax]
                sample['image'] = im
                sample['gt_bbox'] = crop_bbox
                sample['gt_class'] = crop_class
                sample['gt_score'] = crop_score
                return sample
            return sample


860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
@register_op
class NormalizeBox(BaseOperator):
    """Transform the bounding box's coornidates to [0,1]."""

    def __init__(self):
        super(NormalizeBox, self).__init__()

    def __call__(self, sample, context):
        gt_bbox = sample['gt_bbox']
        width = sample['w']
        height = sample['h']
        for i in range(gt_bbox.shape[0]):
            gt_bbox[i][0] = gt_bbox[i][0] / width
            gt_bbox[i][1] = gt_bbox[i][1] / height
            gt_bbox[i][2] = gt_bbox[i][2] / width
            gt_bbox[i][3] = gt_bbox[i][3] / height
        sample['gt_bbox'] = gt_bbox
        return sample


@register_op
class Permute(BaseOperator):
    def __init__(self, to_bgr=True, channel_first=True):
        """
        Change the channel.
        Args:
            to_bgr (bool): confirm whether to convert RGB to BGR
            channel_first (bool): confirm whether to change channel

        """
        super(Permute, self).__init__()
        self.to_bgr = to_bgr
        self.channel_first = channel_first
        if not (isinstance(self.to_bgr, bool) and
                isinstance(self.channel_first, bool)):
            raise TypeError("{}: input type is invalid.".format(self))

    def __call__(self, sample, context=None):
        assert 'image' in sample, "image data not found"
W
wangguanzhong 已提交
899 900 901 902 903 904 905 906 907
        for k in sample.keys():
            if 'image' in k:
                im = sample[k]
                if self.channel_first:
                    im = np.swapaxes(im, 1, 2)
                    im = np.swapaxes(im, 1, 0)
                if self.to_bgr:
                    im = im[[2, 1, 0], :, :]
                sample[k] = im
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
        return sample


@register_op
class MixupImage(BaseOperator):
    def __init__(self, alpha=1.5, beta=1.5):
        """ Mixup image and gt_bbbox/gt_score
        Args:
            alpha (float): alpha parameter of beta distribute
            beta (float): beta parameter of beta distribute
        """
        super(MixupImage, self).__init__()
        self.alpha = alpha
        self.beta = beta
        if self.alpha <= 0.0:
            raise ValueError("alpha shold be positive in {}".format(self))
        if self.beta <= 0.0:
            raise ValueError("beta shold be positive in {}".format(self))

    def _mixup_img(self, img1, img2, factor):
        h = max(img1.shape[0], img2.shape[0])
        w = max(img1.shape[1], img2.shape[1])
        img = np.zeros((h, w, img1.shape[2]), 'float32')
        img[:img1.shape[0], :img1.shape[1], :] = \
            img1.astype('float32') * factor
        img[:img2.shape[0], :img2.shape[1], :] += \
            img2.astype('float32') * (1.0 - factor)
        return img.astype('uint8')

    def __call__(self, sample, context=None):
        if 'mixup' not in sample:
            return sample
        factor = np.random.beta(self.alpha, self.beta)
        factor = max(0.0, min(1.0, factor))
        if factor >= 1.0:
            sample.pop('mixup')
            return sample
        if factor <= 0.0:
            return sample['mixup']
        im = self._mixup_img(sample['image'], sample['mixup']['image'], factor)
        gt_bbox1 = sample['gt_bbox']
        gt_bbox2 = sample['mixup']['gt_bbox']
        gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
        gt_class1 = sample['gt_class']
        gt_class2 = sample['mixup']['gt_class']
        gt_class = np.concatenate((gt_class1, gt_class2), axis=0)

        gt_score1 = sample['gt_score']
        gt_score2 = sample['mixup']['gt_score']
        gt_score = np.concatenate(
            (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
        sample['image'] = im
        sample['gt_bbox'] = gt_bbox
        sample['gt_score'] = gt_score
        sample['gt_class'] = gt_class
        sample['h'] = im.shape[0]
        sample['w'] = im.shape[1]
        sample.pop('mixup')
        return sample


@register_op
class RandomInterpImage(BaseOperator):
    def __init__(self, target_size=0, max_size=0):
        """
        Random reisze image by multiply interpolate method.
        Args:
            target_size (int): the taregt size of image's short side
            max_size (int): the max size of image
        """
        super(RandomInterpImage, self).__init__()
        self.target_size = target_size
        self.max_size = max_size
        if not (isinstance(self.target_size, int) and
                isinstance(self.max_size, int)):
            raise TypeError('{}: input type is invalid.'.format(self))
        interps = [
            cv2.INTER_NEAREST,
            cv2.INTER_LINEAR,
            cv2.INTER_AREA,
            cv2.INTER_CUBIC,
            cv2.INTER_LANCZOS4,
        ]
        self.resizers = []
        for interp in interps:
            self.resizers.append(ResizeImage(target_size, max_size, interp))

    def __call__(self, sample, context=None):
        """Resise the image numpy by random resizer."""
        resizer = random.choice(self.resizers)
        return resizer(sample, context)
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034


@register_op
class Resize(BaseOperator):
    """Resize image and bbox.

    Args:
        target_dim (int or list): target size, can be a single number or a list
            (for random shape).
        interp (int or str): interpolation method, can be an integer or
            'random' (for randomized interpolation).
            default to `cv2.INTER_LINEAR`.
    """
    def __init__(self,
                 target_dim=[],
                 interp=cv2.INTER_LINEAR):
        super(Resize, self).__init__()
        self.target_dim = target_dim
        self.interp = interp  # 'random' for yolov3

    def __call__(self, sample, context=None):
        w = sample['w']
        h = sample['h']

        interp = self.interp
        if interp == 'random':
            interp = np.random.choice(range(5))

        if isinstance(self.target_dim, Sequence):
            dim = np.random.choice(self.target_dim)
        else:
            dim = self.target_dim
        resize_w = resize_h = dim
        scale_x = dim / w
        scale_y = dim / h
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
1035 1036 1037 1038
            scale_array = np.array([scale_x, scale_y] * 2,
                                   dtype=np.float32)
            sample['gt_bbox'] = np.clip(
                sample['gt_bbox'] * scale_array, 0, dim - 1)
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
        sample['h'] = resize_h
        sample['w'] = resize_w

        sample['image'] = cv2.resize(
            sample['image'], (resize_w, resize_h), interpolation=interp)
        return sample


@register_op
class ColorDistort(BaseOperator):
    """Random color distortion.

    Args:
        hue (list): hue settings.
            in [lower, upper, probability] format.
        saturation (list): saturation settings.
            in [lower, upper, probability] format.
        contrast (list): contrast settings.
            in [lower, upper, probability] format.
        brightness (list): brightness settings.
            in [lower, upper, probability] format.
        random_apply (bool): whether to apply in random (yolo) or fixed (SSD)
            order.
    """
    def __init__(self,
                 hue=[-18, 18, 0.5],
                 saturation=[0.5, 1.5, 0.5],
                 contrast=[0.5, 1.5, 0.5],
                 brightness=[0.5, 1.5, 0.5],
                 random_apply=True):
        super(ColorDistort, self).__init__()
        self.hue = hue
        self.saturation = saturation
        self.contrast = contrast
        self.brightness = brightness
        self.random_apply = random_apply

    def apply_hue(self, img):
        low, high, prob = self.hue
        if np.random.uniform(0., 1.) < prob:
            return img

        img = img.astype(np.float32)

        # XXX works, but result differ from HSV version
        delta = np.random.uniform(low, high)
        u = np.cos(delta * np.pi)
        w = np.sin(delta * np.pi)
        bt = np.array([[1.0, 0.0, 0.0],
                       [0.0, u, -w],
                       [0.0, w, u]])
        tyiq = np.array([[0.299, 0.587, 0.114],
                         [0.596, -0.274, -0.321],
                         [0.211, -0.523, 0.311]])
        ityiq = np.array([[1.0, 0.956, 0.621],
                          [1.0, -0.272, -0.647],
                          [1.0, -1.107, 1.705]])
        t = np.dot(np.dot(ityiq, bt), tyiq).T
        img = np.dot(img, t)
        return img

    def apply_saturation(self, img):
        low, high, prob = self.saturation
        if np.random.uniform(0., 1.) < prob:
            return img
        delta = np.random.uniform(low, high)

        img = img.astype(np.float32)
        gray = img * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
        gray = gray.sum(axis=2, keepdims=True)
        gray *= (1.0 - delta)
        img *= delta
        img += gray
        return img

    def apply_contrast(self, img):
        low, high, prob = self.contrast
        if np.random.uniform(0., 1.) < prob:
            return img
        delta = np.random.uniform(low, high)

        img = img.astype(np.float32)
        img *= delta
        return img

    def apply_brightness(self, img):
        low, high, prob = self.brightness
        if np.random.uniform(0., 1.) < prob:
            return img
        delta = np.random.uniform(low, high)

        img = img.astype(np.float32)
        img += delta
        return img

    def __call__(self, sample, context=None):
        img = sample['image']
        if self.random_apply:
            distortions = np.random.permutation([
                self.apply_brightness,
                self.apply_contrast,
                self.apply_saturation,
                self.apply_hue
            ])
            for func in distortions:
                img = func(img)
            sample['image'] = img
            return sample

        img = self.apply_brightness(img)

        if np.random.randint(0, 2):
            img = self.apply_contrast(img)
            img = self.apply_saturation(img)
            img = self.apply_hue(img)
        else:
            img = self.apply_saturation(img)
            img = self.apply_hue(img)
            img = self.apply_contrast(img)
        sample['image'] = img
        return sample


@register_op
class NormalizePermute(BaseOperator):
    """Normalize and permute channel order.

    Args:
        mean (list): mean values in RGB order.
        std (list): std values in RGB order.
    """
    def __init__(self,
                 mean=[123.675, 116.28, 103.53],
                 std=[58.395, 57.120, 57.375]):
        super(NormalizePermute, self).__init__()
        self.mean = mean
        self.std = std

    def __call__(self, sample, context=None):
        img = sample['image']
        img = img.astype(np.float32)

        img = img.transpose((2, 0, 1))
        mean = np.array(self.mean, dtype=np.float32)
        std = np.array(self.std, dtype=np.float32)
        invstd = 1. / std
        for v, m, s in zip(img, mean, invstd):
            v.__isub__(m).__imul__(s)
        sample['image'] = img
        return sample


@register_op
class RandomExpand(BaseOperator):
    """Random expand the canvas.

    Args:
        ratio (float): maximum expansion ratio.
        prob (float): probability to expand.
        fill_value (list): color value used to fill the canvas. in RGB order.
    """
    def __init__(self, ratio=4., prob=0.5, fill_value=(127.5,) * 3):
        super(RandomExpand, self).__init__()
        assert ratio > 1.01, "expand ratio must be larger than 1.01"
        self.ratio = ratio
        self.prob = prob
        assert isinstance(fill_value, (Number, Sequence)), \
            "fill value must be either float or sequence"
        if isinstance(fill_value, Number):
            fill_value = (fill_value,) * 3
        if not isinstance(fill_value, tuple):
            fill_value = tuple(fill_value)
        self.fill_value = fill_value

    def __call__(self, sample, context=None):
        if np.random.uniform(0., 1.) < self.prob:
            return sample

        img = sample['image']
        height = int(sample['h'])
        width = int(sample['w'])

        expand_ratio = np.random.uniform(1., self.ratio)
        h = int(height * expand_ratio)
        w = int(width * expand_ratio)
        if not h > height or not w > width:
            return sample
        y = np.random.randint(0, h - height)
        x = np.random.randint(0, w - width)
        canvas = np.ones((h, w, 3), dtype=np.uint8)
        canvas *= np.array(self.fill_value, dtype=np.uint8)
        canvas[y:y + height, x:x + width, :] = img.astype(np.uint8)

        sample['h'] = h
        sample['w'] = w
        sample['image'] = canvas
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] += np.array([x, y] * 2, dtype=np.float32)
        return sample


@register_op
class RandomCrop(BaseOperator):
    """Random crop image and bboxes.

    Args:
        aspect_ratio (list): aspect ratio of cropped region.
            in [min, max] format.
        thresholds (list): iou thresholds for decide a valid bbox crop.
        scaling (list): ratio between a cropped region and the original image.
             in [min, max] format.
        num_attempts (int): number of tries before giving up.
        allow_no_crop (bool): allow return without actually cropping them.
        cover_all_box (bool): ensure all bboxes are covered in the final crop.
    """
    def __init__(self,
                 aspect_ratio=[.5, 2.],
                 thresholds=[.0, .1, .3, .5, .7, .9],
                 scaling=[.3, 1.],
                 num_attempts=50,
                 allow_no_crop=True,
                 cover_all_box=False):
        super(RandomCrop, self).__init__()
        self.aspect_ratio = aspect_ratio
        self.thresholds = thresholds
        self.scaling = scaling
        self.num_attempts = num_attempts
        self.allow_no_crop = allow_no_crop
        self.cover_all_box = cover_all_box

    def __call__(self, sample, context=None):
        if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
            return sample

        h = sample['h']
        w = sample['w']
        gt_bbox = sample['gt_bbox']

        # NOTE Original method attempts to generate one candidate for each
        # threshold then randomly sample one from the resulting list.
        # Here a short circuit approach is taken, i.e., randomly choose a
        # threshold and attempt to find a valid crop, and simply return the
        # first one found.
        # The probability is not exactly the same, kinda resembling the
        # "Monty Hall" problem. Actually carrying out the attempts will affect
        # observability (just like opening doors in the "Monty Hall" game).
        thresholds = list(self.thresholds)
        if self.allow_no_crop:
            thresholds.append('no_crop')
        np.random.shuffle(thresholds)

        for thresh in thresholds:
            if thresh == 'no_crop':
                return sample

            found = False
            for i in range(self.num_attempts):
                scale = np.random.uniform(*self.scaling)
                min_ar, max_ar = self.aspect_ratio
                aspect_ratio = np.random.uniform(max(min_ar, scale**2),
                                                 min(max_ar, scale**-2))
                crop_h = int(h * scale / np.sqrt(aspect_ratio))
                crop_w = int(w * scale * np.sqrt(aspect_ratio))
                crop_y = np.random.randint(0, h - crop_h)
                crop_x = np.random.randint(0, w - crop_w)
                crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
                iou = self._iou_matrix(gt_bbox,
                                       np.array([crop_box], dtype=np.float32))
                if iou.max() < thresh:
                    continue

                if self.cover_all_box and iou.min() < thresh:
                    continue

                cropped_box, valid_ids = self._crop_box_with_center_constraint(
                    gt_bbox, np.array(crop_box, dtype=np.float32))
                if valid_ids.size > 0:
                    found = True
                    break

            if found:
                sample['image'] = self._crop_image(sample['image'], crop_box)
                sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
                sample['gt_class'] = np.take(
                    sample['gt_class'], valid_ids, axis=0)
                sample['w'] = crop_box[2] - crop_box[0]
                sample['h'] = crop_box[3] - crop_box[1]
                if 'gt_score' in sample:
                    sample['gt_score'] = np.take(
                        sample['gt_score'], valid_ids, axis=0)
                return sample

        return sample

    def _iou_matrix(self, a, b):
        tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
        br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])

        area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
        area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
        area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
        area_o = (area_a[:, np.newaxis] + area_b - area_i)
        return area_i / (area_o + 1e-10)

    def _crop_box_with_center_constraint(self, box, crop):
        cropped_box = box.copy()

        cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
        cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
        cropped_box[:, :2] -= crop[:2]
        cropped_box[:, 2:] -= crop[:2]

        centers = (box[:, :2] + box[:, 2:]) / 2
        valid = np.logical_and(
            crop[:2] <= centers, centers < crop[2:]).all(axis=1)
        valid = np.logical_and(
            valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))

        return cropped_box, np.where(valid)[0]

    def _crop_image(self, img, crop):
        x1, y1, x2, y2 = crop
        return img[y1:y2, x1:x2, :]