visualizer.py 10.4 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
from PIL import Image, ImageDraw
G
Guanghua Yu 已提交
22
import cv2
23 24 25
import os
import math

Q
qingqing01 已提交
26
from .colormap import colormap
C
cnn 已提交
27 28
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
Q
qingqing01 已提交
29 30 31 32 33 34 35

__all__ = ['visualize_results']


def visualize_results(image,
                      bbox_res,
                      mask_res,
G
Guanghua Yu 已提交
36
                      segm_res,
37
                      keypoint_res,
Q
qingqing01 已提交
38 39 40 41 42 43 44 45 46 47
                      im_id,
                      catid2name,
                      threshold=0.5):
    """
    Visualize bbox and mask results
    """
    if bbox_res is not None:
        image = draw_bbox(image, im_id, catid2name, bbox_res, threshold)
    if mask_res is not None:
        image = draw_mask(image, im_id, mask_res, threshold)
G
Guanghua Yu 已提交
48 49
    if segm_res is not None:
        image = draw_segm(image, im_id, catid2name, segm_res, threshold)
50 51
    if keypoint_res is not None:
        image = draw_pose(image, keypoint_res, threshold)
Q
qingqing01 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    return image


def draw_mask(image, im_id, segms, threshold, alpha=0.7):
    """
    Draw mask on image
    """
    mask_color_id = 0
    w_ratio = .4
    color_list = colormap(rgb=True)
    img_array = np.array(image).astype('float32')
    for dt in np.array(segms):
        if im_id != dt['image_id']:
            continue
        segm, score = dt['segmentation'], dt['score']
        if score < threshold:
            continue
        import pycocotools.mask as mask_util
        mask = mask_util.decode(segm) * 255
        color_mask = color_list[mask_color_id % len(color_list), 0:3]
        mask_color_id += 1
        for c in range(3):
            color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
        idx = np.nonzero(mask)
        img_array[idx[0], idx[1], :] *= 1.0 - alpha
        img_array[idx[0], idx[1], :] += alpha * color_mask
    return Image.fromarray(img_array.astype('uint8'))


def draw_bbox(image, im_id, catid2name, bboxes, threshold):
    """
    Draw bbox on image
    """
    draw = ImageDraw.Draw(image)

    catid2color = {}
    color_list = colormap(rgb=True)[:40]
    for dt in np.array(bboxes):
        if im_id != dt['image_id']:
            continue
        catid, bbox, score = dt['category_id'], dt['bbox'], dt['score']
        if score < threshold:
            continue

        if catid not in catid2color:
            idx = np.random.randint(len(color_list))
            catid2color[catid] = color_list[idx]
        color = tuple(catid2color[catid])

        # draw bbox
C
cnn 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        if len(bbox) == 4:
            # draw bbox
            xmin, ymin, w, h = bbox
            xmax = xmin + w
            ymax = ymin + h
            draw.line(
                [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
                 (xmin, ymin)],
                width=2,
                fill=color)
        elif len(bbox) == 8:
            x1, y1, x2, y2, x3, y3, x4, y4 = bbox
            draw.line(
                [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
                width=2,
                fill=color)
            xmin = min(x1, x2, x3, x4)
            ymin = min(y1, y2, y3, y4)
        else:
            logger.error('the shape of bbox must be [M, 4] or [M, 8]!')
Q
qingqing01 已提交
122 123 124 125 126 127 128 129 130

        # draw label
        text = "{} {:.2f}".format(catid2name[catid], score)
        tw, th = draw.textsize(text)
        draw.rectangle(
            [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
        draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))

    return image
G
Guanghua Yu 已提交
131 132


133
def save_result(save_path, results, catid2name, threshold):
C
cnn 已提交
134 135 136
    """
    save result as txt
    """
137
    img_id = int(results["im_id"])
C
cnn 已提交
138
    with open(save_path, 'w') as f:
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        if "bbox_res" in results:
            for dt in results["bbox_res"]:
                catid, bbox, score = dt['category_id'], dt['bbox'], dt['score']
                if score < threshold:
                    continue
                # each bbox result as a line
                # for rbox: classname score x1 y1 x2 y2 x3 y3 x4 y4
                # for bbox: classname score x1 y1 w h
                bbox_pred = '{} {} '.format(catid2name[catid],
                                            score) + ' '.join(
                                                [str(e) for e in bbox])
                f.write(bbox_pred + '\n')
        elif "keypoint_res" in results:
            for dt in results["keypoint_res"]:
                kpts = dt['keypoints']
                scores = dt['score']
                keypoint_pred = [img_id, scores, kpts]
                print(keypoint_pred, file=f)
        else:
            print("No valid results found, skip txt save")
C
cnn 已提交
159 160


G
Guanghua Yu 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
def draw_segm(image,
              im_id,
              catid2name,
              segms,
              threshold,
              alpha=0.7,
              draw_box=True):
    """
    Draw segmentation on image
    """
    mask_color_id = 0
    w_ratio = .4
    color_list = colormap(rgb=True)
    img_array = np.array(image).astype('float32')
    for dt in np.array(segms):
        if im_id != dt['image_id']:
            continue
        segm, score, catid = dt['segmentation'], dt['score'], dt['category_id']
        if score < threshold:
            continue
        import pycocotools.mask as mask_util
        mask = mask_util.decode(segm) * 255
        color_mask = color_list[mask_color_id % len(color_list), 0:3]
        mask_color_id += 1
        for c in range(3):
            color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
        idx = np.nonzero(mask)
        img_array[idx[0], idx[1], :] *= 1.0 - alpha
        img_array[idx[0], idx[1], :] += alpha * color_mask

        if not draw_box:
            center_y, center_x = ndimage.measurements.center_of_mass(mask)
            label_text = "{}".format(catid2name[catid])
            vis_pos = (max(int(center_x) - 10, 0), int(center_y))
            cv2.putText(img_array, label_text, vis_pos,
                        cv2.FONT_HERSHEY_COMPLEX, 0.3, (255, 255, 255))
        else:
            mask = mask_util.decode(segm) * 255
            sum_x = np.sum(mask, axis=0)
            x = np.where(sum_x > 0.5)[0]
            sum_y = np.sum(mask, axis=1)
            y = np.where(sum_y > 0.5)[0]
            x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
            cv2.rectangle(img_array, (x0, y0), (x1, y1),
                          tuple(color_mask.astype('int32').tolist()), 1)
            bbox_text = '%s %.2f' % (catid2name[catid], score)
            t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
            cv2.rectangle(img_array, (x0, y0), (x0 + t_size[0],
                                                y0 - t_size[1] - 3),
                          tuple(color_mask.astype('int32').tolist()), -1)
            cv2.putText(
                img_array,
                bbox_text, (x0, y0 - 2),
                cv2.FONT_HERSHEY_SIMPLEX,
                0.3, (0, 0, 0),
                1,
                lineType=cv2.LINE_AA)

    return Image.fromarray(img_array.astype('uint8'))
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292


def map_coco_to_personlab(keypoints):
    permute = [0, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3]
    return keypoints[:, permute, :]


def draw_pose(image, results, visual_thread=0.6, save_name='pose.jpg'):
    try:
        import matplotlib.pyplot as plt
        import matplotlib
        plt.switch_backend('agg')
    except Exception as e:
        logger.error('Matplotlib not found, plaese install matplotlib.'
                     'for example: `pip install matplotlib`.')
        raise e
    EDGES = [(0, 14), (0, 13), (0, 4), (0, 1), (14, 16), (13, 15), (4, 10),
             (1, 7), (10, 11), (7, 8), (11, 12), (8, 9), (4, 5), (1, 2), (5, 6),
             (2, 3)]
    NUM_EDGES = len(EDGES)

    colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
            [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
            [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
    cmap = matplotlib.cm.get_cmap('hsv')
    plt.figure()

    skeletons = np.array([item['keypoints'] for item in results]).reshape(-1,
                                                                          17, 3)
    img = np.array(image).astype('float32')
    canvas = img.copy()

    for i in range(17):
        rgba = np.array(cmap(1 - i / 17. - 1. / 34))
        rgba[0:3] *= 255
        for j in range(len(skeletons)):
            if skeletons[j][i, 2] < visual_thread:
                continue
            cv2.circle(
                canvas,
                tuple(skeletons[j][i, 0:2].astype('int32')),
                2,
                colors[i],
                thickness=-1)

    to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0)
    fig = matplotlib.pyplot.gcf()

    stickwidth = 2

    skeletons = map_coco_to_personlab(skeletons)
    for i in range(NUM_EDGES):
        for j in range(len(skeletons)):
            edge = EDGES[i]
            if skeletons[j][edge[0], 2] < visual_thread or skeletons[j][edge[
                    1], 2] < visual_thread:
                continue

            cur_canvas = canvas.copy()
            X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]]
            Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]]
            mX = np.mean(X)
            mY = np.mean(Y)
            length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5
            angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
            polygon = cv2.ellipse2Poly((int(mY), int(mX)),
                                       (int(length / 2), stickwidth),
                                       int(angle), 0, 360, 1)
            cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
            canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
    image = Image.fromarray(canvas.astype('uint8'))
    plt.close()
    return image