convnext.py 8.4 KB
Newer Older
W
Wenyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.
'''
Modified from https://github.com/facebookresearch/ConvNeXt
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
'''

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Constant

import numpy as np

from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec
W
Wenyu 已提交
32
from .transformer_utils import DropPath, trunc_normal_, zeros_
W
Wenyu 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

__all__ = ['ConvNeXt']


class Block(nn.Layer):
    r""" ConvNeXt Block. There are two equivalent implementations:
    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
    We use (2) as we find it slightly faster in Pypaddle
    
    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """

    def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
        super().__init__()
        self.dwconv = nn.Conv2D(
            dim, dim, kernel_size=7, padding=3, groups=dim)  # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(
            dim, 4 * dim)  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)

        if layer_scale_init_value > 0:
            self.gamma = self.create_parameter(
                shape=(dim, ),
                attr=ParamAttr(initializer=Constant(layer_scale_init_value)))
        else:
            self.gamma = None

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity(
        )

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = x.transpose([0, 2, 3, 1])
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.transpose([0, 3, 1, 2])
        x = input + self.drop_path(x)
        return x


class LayerNorm(nn.Layer):
    r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. 
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with 
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs 
    with shape (batch_size, channels, height, width).
    """

    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()

        self.weight = self.create_parameter(
            shape=(normalized_shape, ),
            attr=ParamAttr(initializer=Constant(1.)))
        self.bias = self.create_parameter(
            shape=(normalized_shape, ),
            attr=ParamAttr(initializer=Constant(0.)))

        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError
        self.normalized_shape = (normalized_shape, )

    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight,
                                self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / paddle.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x


@register
@serializable
class ConvNeXt(nn.Layer):
    r""" ConvNeXt
        A Pypaddle impl of : `A ConvNet for the 2020s`  -
          https://arxiv.org/pdf/2201.03545.pdf

    Args:
        in_chans (int): Number of input image channels. Default: 3
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    arch_settings = {
        'tiny': {
            'depths': [3, 3, 9, 3],
            'dims': [96, 192, 384, 768]
        },
        'small': {
            'depths': [3, 3, 27, 3],
            'dims': [96, 192, 384, 768]
        },
        'base': {
            'depths': [3, 3, 27, 3],
            'dims': [128, 256, 512, 1024]
        },
        'large': {
            'depths': [3, 3, 27, 3],
            'dims': [192, 384, 768, 1536]
        },
        'xlarge': {
            'depths': [3, 3, 27, 3],
            'dims': [256, 512, 1024, 2048]
        },
    }

W
Wenyu 已提交
157 158
    def __init__(
            self,
159
            arch='tiny',
W
Wenyu 已提交
160 161 162 163
            in_chans=3,
            drop_path_rate=0.,
            layer_scale_init_value=1e-6,
            return_idx=[1, 2, 3],
164
            norm_output=True,
W
Wenyu 已提交
165 166
            pretrained=None, ):
        super().__init__()
167 168
        depths = self.arch_settings[arch]['depths']
        dims = self.arch_settings[arch]['dims']
W
Wenyu 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        self.downsample_layers = nn.LayerList(
        )  # stem and 3 intermediate downsampling conv layers
        stem = nn.Sequential(
            nn.Conv2D(
                in_chans, dims[0], kernel_size=4, stride=4),
            LayerNorm(
                dims[0], eps=1e-6, data_format="channels_first"))
        self.downsample_layers.append(stem)
        for i in range(3):
            downsample_layer = nn.Sequential(
                LayerNorm(
                    dims[i], eps=1e-6, data_format="channels_first"),
                nn.Conv2D(
                    dims[i], dims[i + 1], kernel_size=2, stride=2), )
            self.downsample_layers.append(downsample_layer)

        self.stages = nn.LayerList(
        )  # 4 feature resolution stages, each consisting of multiple residual blocks
        dp_rates = [x for x in np.linspace(0, drop_path_rate, sum(depths))]
        cur = 0
        for i in range(4):
190
            stage = nn.Sequential(* [
W
Wenyu 已提交
191 192 193 194 195 196 197 198 199 200 201 202
                Block(
                    dim=dims[i],
                    drop_path=dp_rates[cur + j],
                    layer_scale_init_value=layer_scale_init_value)
                for j in range(depths[i])
            ])
            self.stages.append(stage)
            cur += depths[i]

        self.return_idx = return_idx
        self.dims = [dims[i] for i in return_idx]  # [::-1]

203 204 205 206 207 208 209 210
        self.norm_output = norm_output
        if norm_output:
            self.norms = nn.LayerList([
                LayerNorm(
                    c, eps=1e-6, data_format="channels_first")
                for c in self.dims
            ])

W
Wenyu 已提交
211 212 213 214 215 216 217 218 219 220 221 222
        self.apply(self._init_weights)

        if pretrained is not None:
            if 'http' in pretrained:  #URL
                path = paddle.utils.download.get_weights_path_from_url(
                    pretrained)
            else:  #model in local path
                path = pretrained
            self.set_state_dict(paddle.load(path))

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2D, nn.Linear)):
W
Wenyu 已提交
223 224
            trunc_normal_(m.weight)
            zeros_(m.bias)
W
Wenyu 已提交
225 226 227 228 229 230 231 232

    def forward_features(self, x):
        output = []
        for i in range(4):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)
            output.append(x)

233 234 235
        outputs = [output[i] for i in self.return_idx]
        if self.norm_output:
            outputs = [self.norms[i](out) for i, out in enumerate(outputs)]
W
Wenyu 已提交
236

237
        return outputs
W
Wenyu 已提交
238 239 240 241 242 243 244 245

    def forward(self, x):
        x = self.forward_features(x['image'])
        return x

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self.dims]