mot_keypoint_unite_utils.py 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import ast
import argparse


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--mot_model_dir",
        type=str,
        default=None,
        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
              "'infer_cfg.yml', created by tools/export_model.py."),
        required=True)
    parser.add_argument(
        "--keypoint_model_dir",
        type=str,
        default=None,
        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
              "'infer_cfg.yml', created by tools/export_model.py."),
        required=True)
    parser.add_argument(
        "--image_file", type=str, default=None, help="Path of image file.")
    parser.add_argument(
        "--image_dir",
        type=str,
        default=None,
        help="Dir of image file, `image_file` has a higher priority.")
    parser.add_argument(
        "--keypoint_batch_size",
        type=int,
        default=1,
        help=("batch_size for keypoint inference. In detection-keypoint unit"
              "inference, the batch size in detection is 1. Then collate det "
              "result in batch for keypoint inference."))
    parser.add_argument(
        "--video_file",
        type=str,
        default=None,
        help="Path of video file, `video_file` or `camera_id` has a highest priority."
    )
    parser.add_argument(
        "--camera_id",
        type=int,
        default=-1,
        help="device id of camera to predict.")
    parser.add_argument(
        "--mot_threshold", type=float, default=0.5, help="Threshold of score.")
    parser.add_argument(
        "--keypoint_threshold",
        type=float,
        default=0.5,
        help="Threshold of score.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")
    parser.add_argument(
        "--run_mode",
        type=str,
75 76
        default='paddle',
        help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)")
77 78 79 80
    parser.add_argument(
        "--device",
        type=str,
        default='cpu',
81
        help="Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU."
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    )
    parser.add_argument(
        "--run_benchmark",
        type=ast.literal_eval,
        default=False,
        help="Whether to predict a image_file repeatedly for benchmark")
    parser.add_argument(
        "--enable_mkldnn",
        type=ast.literal_eval,
        default=False,
        help="Whether use mkldnn with CPU.")
    parser.add_argument(
        "--cpu_threads", type=int, default=1, help="Num of threads with CPU.")
    parser.add_argument(
        "--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.")
    parser.add_argument(
        "--trt_max_shape",
        type=int,
        default=1088,
        help="max_shape for TensorRT.")
    parser.add_argument(
        "--trt_opt_shape",
        type=int,
        default=608,
        help="opt_shape for TensorRT.")
    parser.add_argument(
        "--trt_calib_mode",
        type=bool,
        default=False,
        help="If the model is produced by TRT offline quantitative "
        "calibration, trt_calib_mode need to set True.")
    parser.add_argument(
        '--save_images',
        action='store_true',
        help='Save visualization image results.')
    parser.add_argument(
        '--save_mot_txts',
        action='store_true',
        help='Save tracking results (txt).')
    parser.add_argument(
        '--use_dark',
        type=bool,
        default=True,
        help='whether to use darkpose to get better keypoint position predict ')
W
wangguanzhong 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138
    parser.add_argument(
        '--save_res',
        type=bool,
        default=False,
        help=(
            "whether to save predict results to json file"
            "1) store_res: a list of image_data"
            "2) image_data: [imageid, rects, [keypoints, scores]]"
            "3) rects: list of rect [xmin, ymin, xmax, ymax]"
            "4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list"
            "5) scores: mean of all joint conf"))
    parser.add_argument(
        "--tracker_config", type=str, default=None, help=("tracker donfig"))
139
    return parser