mot_centertrack_infer.py 19.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import copy
import math
import time
import yaml
import cv2
import numpy as np
from collections import defaultdict
import paddle

from benchmark_utils import PaddleInferBenchmark
from utils import gaussian_radius, gaussian2D, draw_umich_gaussian
from preprocess import preprocess, decode_image, WarpAffine, NormalizeImage, Permute
from utils import argsparser, Timer, get_current_memory_mb
from infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig
from keypoint_preprocess import get_affine_transform

# add python path
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from pptracking.python.mot import CenterTracker
from pptracking.python.mot.utils import MOTTimer, write_mot_results
from pptracking.python.mot.visualize import plot_tracking


def transform_preds_with_trans(coords, trans):
    target_coords = np.ones((coords.shape[0], 3), np.float32)
    target_coords[:, :2] = coords
    target_coords = np.dot(trans, target_coords.transpose()).transpose()
    return target_coords[:, :2]


def affine_transform(pt, t):
    new_pt = np.array([pt[0], pt[1], 1.]).T
    new_pt = np.dot(t, new_pt)
    return new_pt[:2]


def affine_transform_bbox(bbox, trans, width, height):
    bbox = np.array(copy.deepcopy(bbox), dtype=np.float32)
    bbox[:2] = affine_transform(bbox[:2], trans)
    bbox[2:] = affine_transform(bbox[2:], trans)
    bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, width - 1)
    bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, height - 1)
    return bbox


class CenterTrack(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
68
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
        output_dir (string): The path of output, default as 'output'
        threshold (float): Score threshold of the detected bbox, default as 0.5
        save_images (bool): Whether to save visualization image results, default as False
        save_mot_txts (bool): Whether to save tracking results (txt), default as False
    """

    def __init__(
            self,
            model_dir,
            tracker_config=None,
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=960,
            trt_opt_shape=544,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
            output_dir='output',
            threshold=0.5,
            save_images=False,
            save_mot_txts=False, ):
        super(CenterTrack, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )
        self.save_images = save_images
        self.save_mot_txts = save_mot_txts
        assert batch_size == 1, "MOT model only supports batch_size=1."
        self.det_times = Timer(with_tracker=True)
        self.num_classes = len(self.pred_config.labels)

        # tracker config
        cfg = self.pred_config.tracker
        min_box_area = cfg.get('min_box_area', -1)
        vertical_ratio = cfg.get('vertical_ratio', -1)
        track_thresh = cfg.get('track_thresh', 0.4)
        pre_thresh = cfg.get('pre_thresh', 0.5)

        self.tracker = CenterTracker(
            num_classes=self.num_classes,
            min_box_area=min_box_area,
            vertical_ratio=vertical_ratio,
            track_thresh=track_thresh,
            pre_thresh=pre_thresh)
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        self.pre_image = None

    def get_additional_inputs(self, dets, meta, with_hm=True):
        # Render input heatmap from previous trackings.
        trans_input = meta['trans_input']
        inp_width, inp_height = int(meta['inp_width']), int(meta['inp_height'])
        input_hm = np.zeros((1, inp_height, inp_width), dtype=np.float32)

        for det in dets:
            if det['score'] < self.tracker.pre_thresh:
                continue
            bbox = affine_transform_bbox(det['bbox'], trans_input, inp_width,
                                         inp_height)
            h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
            if (h > 0 and w > 0):
                radius = gaussian_radius(
                    (math.ceil(h), math.ceil(w)), min_overlap=0.7)
                radius = max(0, int(radius))
                ct = np.array(
                    [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2],
                    dtype=np.float32)
                ct_int = ct.astype(np.int32)
                if with_hm:
                    input_hm[0] = draw_umich_gaussian(input_hm[0], ct_int,
                                                      radius)
        if with_hm:
            input_hm = input_hm[np.newaxis]
        return input_hm

    def preprocess(self, image_list):
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))

        assert len(image_list) == 1, 'MOT only support bs=1'
        im_path = image_list[0]
        im, im_info = preprocess(im_path, preprocess_ops)
        #inputs = create_inputs(im, im_info)
        inputs = {}
        inputs['image'] = np.array((im, )).astype('float32')
176
        inputs['im_shape'] = np.array((im_info['im_shape'], )).astype('float32')
177 178
        inputs['scale_factor'] = np.array(
            (im_info['scale_factor'], )).astype('float32')
179

180 181 182 183 184 185 186
        inputs['trans_input'] = im_info['trans_input']
        inputs['inp_width'] = im_info['inp_width']
        inputs['inp_height'] = im_info['inp_height']
        inputs['center'] = im_info['center']
        inputs['scale'] = im_info['scale']
        inputs['out_height'] = im_info['out_height']
        inputs['out_width'] = im_info['out_width']
187

188 189 190 191 192 193 194 195 196 197
        if self.pre_image is None:
            self.pre_image = inputs['image']
            # initializing tracker for the first frame
            self.tracker.init_track([])
        inputs['pre_image'] = self.pre_image
        self.pre_image = inputs['image']  # Note: update for next image

        # render input heatmap from tracker status
        pre_hm = self.get_additional_inputs(
            self.tracker.tracks, inputs, with_hm=True)
198
        inputs['pre_hm'] = pre_hm  #.to_tensor(pre_hm)
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            if input_names[i] == 'x':
                input_tensor.copy_from_cpu(inputs['image'])
            else:
                input_tensor.copy_from_cpu(inputs[input_names[i]])

        return inputs

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_bboxes = result['bboxes']
        if np_bboxes.shape[0] <= 0:
            print('[WARNNING] No object detected and tracked.')
            result = {'bboxes': np.zeros([0, 6]), 'cts': None, 'tracking': None}
            return result
        result = {k: v for k, v in result.items() if v is not None}
        return result

    def centertrack_post_process(self, dets, meta, out_thresh):
        if not ('bboxes' in dets):
            return [{}]

        preds = []
        c, s = meta['center'], meta['scale']
        h, w = meta['out_height'], meta['out_width']
        trans = get_affine_transform(
            center=c,
            input_size=s,
            rot=0,
            output_size=[w, h],
            shift=(0., 0.),
            inv=True).astype(np.float32)
        for i, dets_bbox in enumerate(dets['bboxes']):
            if dets_bbox[1] < out_thresh:
                break
            item = {}
            item['score'] = dets_bbox[1]
            item['class'] = int(dets_bbox[0]) + 1
            item['ct'] = transform_preds_with_trans(
                dets['cts'][i].reshape([1, 2]), trans).reshape(2)

            if 'tracking' in dets:
                tracking = transform_preds_with_trans(
                    (dets['tracking'][i] + dets['cts'][i]).reshape([1, 2]),
                    trans).reshape(2)
                item['tracking'] = tracking - item['ct']

            if 'bboxes' in dets:
                bbox = transform_preds_with_trans(
                    dets_bbox[2:6].reshape([2, 2]), trans).reshape(4)
                item['bbox'] = bbox

            preds.append(item)
        return preds

    def tracking(self, inputs, det_results):
258 259
        result = self.centertrack_post_process(det_results, inputs,
                                               self.tracker.out_thresh)
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
        online_targets = self.tracker.update(result)

        online_tlwhs, online_scores, online_ids = [], [], []
        for t in online_targets:
            bbox = t['bbox']
            tlwh = [bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]]
            tscore = float(t['score'])
            tid = int(t['tracking_id'])
            if tlwh[2] * tlwh[3] > 0:
                online_tlwhs.append(tlwh)
                online_ids.append(tid)
                online_scores.append(tscore)
        return online_tlwhs, online_scores, online_ids

    def predict(self, repeats=1):
        '''
        Args:
            repeats (int): repeats number for prediction
        Returns:
            result (dict): include 'bboxes', 'cts' and 'tracking':
                np.ndarray: shape:[N,6],[N,2] and [N,2], N: number of box
        '''
        # model prediction
        np_bboxes, np_cts, np_tracking = None, None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            bboxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_bboxes = bboxes_tensor.copy_to_cpu()
            cts_tensor = self.predictor.get_output_handle(output_names[1])
            np_cts = cts_tensor.copy_to_cpu()
            tracking_tensor = self.predictor.get_output_handle(output_names[2])
            np_tracking = tracking_tensor.copy_to_cpu()

294
        result = dict(bboxes=np_bboxes, cts=np_cts, tracking=np_tracking)
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
        return result

    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True,
                      seq_name=None):
        mot_results = []
        num_classes = self.num_classes
        image_list.sort()
        ids2names = self.pred_config.labels
        data_type = 'mcmot' if num_classes > 1 else 'mot'
        for frame_id, img_file in enumerate(image_list):
            batch_image_list = [img_file]  # bs=1 in MOT model
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result_warmup = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking
                result_warmup = self.tracking(inputs, det_result)
                self.det_times.tracking_time_s.start()
332 333
                online_tlwhs, online_scores, online_ids = self.tracking(
                    inputs, det_result)
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu

            else:
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking process
                self.det_times.tracking_time_s.start()
357 358
                online_tlwhs, online_scores, online_ids = self.tracking(
                    inputs, det_result)
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

            if visual:
                if len(image_list) > 1 and frame_id % 10 == 0:
                    print('Tracking frame {}'.format(frame_id))
                frame, _ = decode_image(img_file, {})

                im = plot_tracking(
                    frame,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    ids2names=ids2names)
                if seq_name is None:
                    seq_name = image_list[0].split('/')[-2]
                save_dir = os.path.join(self.output_dir, seq_name)
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                cv2.imwrite(
                    os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)

            mot_results.append([online_tlwhs, online_scores, online_ids])
        return mot_results

    def predict_video(self, video_file, camera_id):
        video_out_name = 'mot_output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        video_format = 'mp4v'
        fourcc = cv2.VideoWriter_fourcc(*video_format)
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

        frame_id = 1
        timer = MOTTimer()
        results = defaultdict(list)  # centertrack onpy support single class
        num_classes = self.num_classes
        data_type = 'mcmot' if num_classes > 1 else 'mot'
        ids2names = self.pred_config.labels
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            if frame_id % 10 == 0:
                print('Tracking frame: %d' % (frame_id))
            frame_id += 1

            timer.tic()
            seq_name = video_out_name.split('.')[0]
            mot_results = self.predict_image(
                [frame[:, :, ::-1]], visual=False, seq_name=seq_name)
            timer.toc()

            fps = 1. / timer.duration
            online_tlwhs, online_scores, online_ids = mot_results[0]
            results[0].append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
            im = plot_tracking(
                frame,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
                fps=fps,
                ids2names=ids2names)

            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break

        if self.save_mot_txts:
            result_filename = os.path.join(
                self.output_dir, video_out_name.split('.')[-2] + '.txt')

            write_mot_results(result_filename, results, data_type, num_classes)

        writer.release()


def main():
    detector = CenterTrack(
        FLAGS.model_dir,
        tracker_config=None,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=1,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        output_dir=FLAGS.output_dir,
        threshold=FLAGS.threshold,
        save_images=FLAGS.save_images,
        save_mot_txts=FLAGS.save_mot_txts)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
            model_dir = FLAGS.model_dir
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(detector, img_list, model_info, name='MOT')


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
498 499
    assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU'
                            ], "device should be CPU, GPU, NPU or XPU"
500 501

    main()