vehicle_attr.py 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob

import cv2
import numpy as np
import math
import paddle
import sys
24 25 26 27
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
28

C
chenxujun 已提交
29
# add deploy path of PaddleDetection to sys.path
30 31 32 33
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
sys.path.insert(0, parent_path)

from paddle.inference import Config, create_predictor
Z
zhiboniu 已提交
34 35
from python.utils import argsparser, Timer, get_current_memory_mb
from python.benchmark_utils import PaddleInferBenchmark
36
from python.infer import Detector, print_arguments
Z
zhiboniu 已提交
37
from pipeline.pphuman.attr_infer import AttrDetector
38 39 40 41 42 43


class VehicleAttr(AttrDetector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
44
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
        type_threshold (float): The threshold of score for vehicle type recognition.
        color_threshold (float): The threshold of score for vehicle color recognition.
    """

    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 output_dir='output',
                 color_threshold=0.5,
                 type_threshold=0.5):
        super(VehicleAttr, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir)
        self.color_threshold = color_threshold
        self.type_threshold = type_threshold
        self.result_history = {}
        self.color_list = [
            "yellow", "orange", "green", "gray", "red", "blue", "white",
            "golden", "brown", "black"
        ]
        self.type_list = [
            "sedan", "suv", "van", "hatchback", "mpv", "pickup", "bus", "truck",
            "estate"
        ]

J
JYChen 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    @classmethod
    def init_with_cfg(cls, args, cfg):
        return cls(model_dir=cfg['model_dir'],
                   batch_size=cfg['batch_size'],
                   color_threshold=cfg['color_threshold'],
                   type_threshold=cfg['type_threshold'],
                   device=args.device,
                   run_mode=args.run_mode,
                   trt_min_shape=args.trt_min_shape,
                   trt_max_shape=args.trt_max_shape,
                   trt_opt_shape=args.trt_opt_shape,
                   trt_calib_mode=args.trt_calib_mode,
                   cpu_threads=args.cpu_threads,
                   enable_mkldnn=args.enable_mkldnn)

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    def postprocess(self, inputs, result):
        # postprocess output of predictor
        im_results = result['output']
        batch_res = []
        for res in im_results:
            res = res.tolist()
            attr_res = []
            color_res_str = "Color: "
            type_res_str = "Type: "
            color_idx = np.argmax(res[:10])
            type_idx = np.argmax(res[10:])

            if res[color_idx] >= self.color_threshold:
                color_res_str += self.color_list[color_idx]
            else:
                color_res_str += "Unknown"
            attr_res.append(color_res_str)

            if res[type_idx + 10] >= self.type_threshold:
                type_res_str += self.type_list[type_idx]
            else:
                type_res_str += "Unknown"
            attr_res.append(type_res_str)

            batch_res.append(attr_res)
        result = {'output': batch_res}
        return result


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
146 147
    assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU'
                            ], "device should be CPU, GPU, NPU or XPU"
148 149 150
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"

    main()