train_nas.py 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import numpy as np
import datetime
from collections import deque


def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

from paddle import fluid
import sys

sys.path.append("../../")
from ppdet.experimental import mixed_precision_context
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.reader import create_reader

from ppdet.utils import dist_utils
from ppdet.utils.eval_utils import parse_fetches, eval_run
from ppdet.utils.stats import TrainingStats
from ppdet.utils.cli import ArgsParser
from ppdet.utils.check import check_gpu, check_version
import ppdet.utils.checkpoint as checkpoint
from paddleslim.analysis import flops
from paddleslim.nas import SANAS
import search_space

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def get_bboxes_scores(result):
    bboxes = result['bbox'][0]
    gt_bbox = result['gt_bbox'][0]
    bbox_lengths = result['bbox'][1][0]
    gt_lengths = result['gt_bbox'][1][0]
    bbox_list = []
    gt_box_list = []
    for i in range(len(bbox_lengths)):
        num = bbox_lengths[i]
        for j in range(num):
            dt = bboxes[j]
            clsid, score, xmin, ymin, xmax, ymax = dt.tolist()
            im_shape = result['im_shape'][0][i].tolist()
            im_height, im_width = int(im_shape[0]), int(im_shape[1])
            xmin *= im_width
            ymin *= im_height
            xmax *= im_width
            ymax *= im_height
            bbox_list.append([xmin, ymin, xmax, ymax, score])
    faces_num_gt = 0
    for i in range(len(gt_lengths)):
        num = gt_lengths[i]
        for j in range(num):
            gt = gt_bbox[j]
            xmin, ymin, xmax, ymax = gt.tolist()
            im_shape = result['im_shape'][0][i].tolist()
            im_height, im_width = int(im_shape[0]), int(im_shape[1])
            xmin *= im_width
            ymin *= im_height
            xmax *= im_width
            ymax *= im_height
            gt_box_list.append([xmin, ymin, xmax, ymax])
            faces_num_gt += 1
    return gt_box_list, bbox_list, faces_num_gt


def calculate_ap_py(results):
    def cal_iou(rect1, rect2):
        lt_x = max(rect1[0], rect2[0])
        lt_y = max(rect1[1], rect2[1])
        rb_x = min(rect1[2], rect2[2])
        rb_y = min(rect1[3], rect2[3])
        if (rb_x > lt_x) and (rb_y > lt_y):
            intersection = (rb_x - lt_x) * (rb_y - lt_y)
        else:
            return 0

        area1 = (rect1[2] - rect1[0]) * (rect1[3] - rect1[1])
        area2 = (rect2[2] - rect2[0]) * (rect2[3] - rect2[1])

        intersection = min(intersection, area1, area2)
        union = area1 + area2 - intersection
        return float(intersection) / union

    def is_same_face(face_gt, face_pred):
        iou = cal_iou(face_gt, face_pred)
        return iou >= 0.5

    def eval_single_image(faces_gt, faces_pred):
        pred_is_true = [False] * len(faces_pred)
        gt_been_pred = [False] * len(faces_gt)
        for i in range(len(faces_pred)):
            isface = False
            for j in range(len(faces_gt)):
                if gt_been_pred[j] == 0:
                    isface = is_same_face(faces_gt[j], faces_pred[i])
                    if isface == 1:
                        gt_been_pred[j] = True
                        break
            pred_is_true[i] = isface
        return pred_is_true

    score_res_pair = {}
    faces_num_gt = 0
    for t in results:
        gt_box_list, bbox_list, face_num_gt = get_bboxes_scores(t)
        faces_num_gt += face_num_gt
        pred_is_true = eval_single_image(gt_box_list, bbox_list)

        for i in range(0, len(pred_is_true)):
            now_score = bbox_list[i][-1]
            if now_score in score_res_pair:
                score_res_pair[now_score].append(int(pred_is_true[i]))
            else:
                score_res_pair[now_score] = [int(pred_is_true[i])]
    keys = score_res_pair.keys()
    keys = sorted(keys, reverse=True)
    tp_num = 0
    predict_num = 0
    precision_list = []
    recall_list = []
    for i in range(len(keys)):
        k = keys[i]
        v = score_res_pair[k]
        predict_num += len(v)
        tp_num += sum(v)
        recall = float(tp_num) / faces_num_gt
        precision_list.append(float(tp_num) / predict_num)
        recall_list.append(recall)
    ap = precision_list[0] * recall_list[0]
    for i in range(1, len(precision_list)):
        ap += precision_list[i] * (recall_list[i] - recall_list[i - 1])
    return ap


def main():
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        import random
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

    cfg = load_config(FLAGS.config)
    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)

    if 'log_iter' not in cfg:
        cfg.log_iter = 20

    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
    # check if paddlepaddle version is satisfied
    check_version()

    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(os.environ.get('CPU_NUM', 1))

    if 'FLAGS_selected_gpus' in env:
        device_id = int(env['FLAGS_selected_gpus'])
    else:
        device_id = 0
    place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

    # add NAS
    config = ([(cfg.search_space)])
    server_address = (cfg.server_ip, cfg.server_port)
    load_checkpoint = FLAGS.resume_checkpoint if FLAGS.resume_checkpoint else None
    sa_nas = SANAS(
        config,
        server_addr=server_address,
        init_temperature=cfg.init_temperature,
        reduce_rate=cfg.reduce_rate,
        search_steps=cfg.search_steps,
        save_checkpoint=cfg.save_dir,
        load_checkpoint=load_checkpoint,
        is_server=cfg.is_server)
    start_iter = 0
    train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) *
                                 devices_num, cfg)
    eval_reader = create_reader(cfg.EvalReader)

    for step in range(cfg.search_steps):
        logger.info('----->>> search step: {} <<<------'.format(step))
        archs = sa_nas.next_archs()[0]

        # build program
        startup_prog = fluid.Program()
        train_prog = fluid.Program()
        with fluid.program_guard(train_prog, startup_prog):
            with fluid.unique_name.guard():
                model = create(main_arch)
                if FLAGS.fp16:
                    assert (getattr(model.backbone, 'norm_type', None)
                            != 'affine_channel'), \
                        '--fp16 currently does not support affine channel, ' \
                        ' please modify backbone settings to use batch norm'

                with mixed_precision_context(FLAGS.loss_scale,
                                             FLAGS.fp16) as ctx:
                    inputs_def = cfg['TrainReader']['inputs_def']
                    feed_vars, train_loader = model.build_inputs(**inputs_def)
                    train_fetches = archs(feed_vars, 'train', cfg)
                    loss = train_fetches['loss']
                    if FLAGS.fp16:
                        loss *= ctx.get_loss_scale_var()
                    lr = lr_builder()
                    optimizer = optim_builder(lr)
                    optimizer.minimize(loss)
                    if FLAGS.fp16:
                        loss /= ctx.get_loss_scale_var()
        current_flops = flops(train_prog)
        logger.info('current steps: {}, flops {}'.format(step, current_flops))
        if current_flops > cfg.max_flops:
            continue

        # parse train fetches
        train_keys, train_values, _ = parse_fetches(train_fetches)
        train_values.append(lr)

        if FLAGS.eval:
            eval_prog = fluid.Program()
            with fluid.program_guard(eval_prog, startup_prog):
                with fluid.unique_name.guard():
                    model = create(main_arch)
                    inputs_def = cfg['EvalReader']['inputs_def']
                    feed_vars, eval_loader = model.build_inputs(**inputs_def)
                    fetches = archs(feed_vars, 'eval', cfg)
            eval_prog = eval_prog.clone(True)

            eval_loader.set_sample_list_generator(eval_reader, place)
            extra_keys = ['im_id', 'im_shape', 'gt_bbox']
            eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
                                                             extra_keys)

        # compile program for multi-devices
        build_strategy = fluid.BuildStrategy()
        build_strategy.fuse_all_optimizer_ops = False
        build_strategy.fuse_elewise_add_act_ops = True

        exec_strategy = fluid.ExecutionStrategy()
        # iteration number when CompiledProgram tries to drop local execution scopes.
        # Set it to be 1 to save memory usages, so that unused variables in
        # local execution scopes can be deleted after each iteration.
        exec_strategy.num_iteration_per_drop_scope = 1
        if FLAGS.dist:
            dist_utils.prepare_for_multi_process(exe, build_strategy,
                                                 startup_prog, train_prog)
            exec_strategy.num_threads = 1

        exe.run(startup_prog)
        compiled_train_prog = fluid.CompiledProgram(
            train_prog).with_data_parallel(
                loss_name=loss.name,
                build_strategy=build_strategy,
                exec_strategy=exec_strategy)
        if FLAGS.eval:
            compiled_eval_prog = fluid.compiler.CompiledProgram(eval_prog)

        train_loader.set_sample_list_generator(train_reader, place)

        train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
        train_loader.start()
        end_time = time.time()

        cfg_name = os.path.basename(FLAGS.config).split('.')[0]
        save_dir = os.path.join(cfg.save_dir, cfg_name)
        time_stat = deque(maxlen=cfg.log_smooth_window)
        ap = 0
        for it in range(start_iter, cfg.max_iters):
            start_time = end_time
            end_time = time.time()
            time_stat.append(end_time - start_time)
            time_cost = np.mean(time_stat)
            eta_sec = (cfg.max_iters - it) * time_cost
            eta = str(datetime.timedelta(seconds=int(eta_sec)))
            outs = exe.run(compiled_train_prog, fetch_list=train_values)
            stats = {
                k: np.array(v).mean()
                for k, v in zip(train_keys, outs[:-1])
            }

            train_stats.update(stats)
            logs = train_stats.log()
            if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0):
                strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                    it, np.mean(outs[-1]), logs, time_cost, eta)
                logger.info(strs)

            if (it > 0 and it == cfg.max_iters - 1) and (not FLAGS.dist or
                                                         trainer_id == 0):
                save_name = str(
                    it) if it != cfg.max_iters - 1 else "model_final"
                checkpoint.save(exe, train_prog,
                                os.path.join(save_dir, save_name))
                if FLAGS.eval:
                    # evaluation
                    results = eval_run(exe, compiled_eval_prog, eval_loader,
                                       eval_keys, eval_values, eval_cls)
                    ap = calculate_ap_py(results)

        train_loader.reset()
        eval_loader.reset()
        logger.info('rewards: ap is {}'.format(ap))
        sa_nas.reward(float(ap))
    current_best_tokens = sa_nas.current_info()['best_tokens']
    logger.info("All steps end, the best BlazeFace-NAS structure  is: ")
    sa_nas.tokens2arch(current_best_tokens)


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "-r",
        "--resume_checkpoint",
        default=None,
        type=str,
        help="Checkpoint path for resuming training.")
    parser.add_argument(
        "--fp16",
        action='store_true',
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--loss_scale",
        default=8.,
        type=float,
        help="Mixed precision training loss scale.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=True,
        help="Whether to perform evaluation in train")
    FLAGS = parser.parse_args()
    main()