yolov3_mobilenet_v1_fruit.yml 2.6 KB
Newer Older
1 2 3 4 5
architecture: YOLOv3
use_gpu: true
max_iters: 20000
log_smooth_window: 20
save_dir: output
6
snapshot_iter: 200
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
metric: VOC
map_type: 11point
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
weights: output/yolov3_mobilenet_v1_fruit/best_model
num_classes: 3
finetune_exclude_pretrained_params: ['yolo_output']

YOLOv3:
  backbone: MobileNet
  yolo_head: YOLOv3Head

MobileNet:
  norm_type: sync_bn
  norm_decay: 0.
  conv_group_scale: 1
  with_extra_blocks: false

YOLOv3Head:
  anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
  anchors: [[10, 13], [16, 30], [33, 23],
            [30, 61], [62, 45], [59, 119],
            [116, 90], [156, 198], [373, 326]]
  norm_decay: 0.
  ignore_thresh: 0.7
  label_smooth: true
  nms:
    background_label: -1
    keep_top_k: 100
    nms_threshold: 0.45
    nms_top_k: 1000
    normalized: false
    score_threshold: 0.01

LearningRate:
  base_lr: 0.00001
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones:
    - 15000
    - 18000
  - !LinearWarmup
    start_factor: 0.
    steps: 100

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

60 61 62 63 64 65 66
_READER_: 'yolov3_reader.yml'
# will merge TrainReader into yolov3_reader.yml
TrainReader:
  inputs_def:
    image_shape: [3, 608, 608]
    fields: ['image', 'gt_bbox', 'gt_class', 'gt_score']
    num_max_boxes: 50
67
  dataset:
68
    !VOCDataSet
W
wangguanzhong 已提交
69
    dataset_dir: dataset/fruit
70 71
    anno_path: train.txt
    with_background: false
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    use_default_label: false
  sample_transforms:
  - !DecodeImage
    to_rgb: true
    with_mixup: false
  - !NormalizeBox {}
  - !ExpandImage
    max_ratio: 4.0
    mean: [123.675, 116.28, 103.53]
    prob: 0.5
  - !RandomInterpImage
    max_size: 0
    target_size: 608
  - !RandomFlipImage
    is_normalized: true
    prob: 0.5
  - !NormalizeImage
89 90
    mean: [0.485, 0.456, 0.406]
    std: [0.229, 0.224, 0.225]
91
    is_scale: true
92 93 94 95 96 97 98
    is_channel_first: false
  - !PadBox
    num_max_boxes: 50
  - !BboxXYXY2XYWH {}
  batch_transforms:
  - !RandomShape
    sizes: [608]
99 100 101
  - !Permute
    channel_first: true
    to_bgr: false
102 103 104 105 106 107
  batch_size: 1
  shuffle: true
  mixup_epoch: -1
  worker_num: 4
  bufsize: 64
  use_process: true
108

109
EvalReader:
110
  batch_size: 1
111 112 113 114
  inputs_def:
    image_shape: [3, 608, 608]
    fields: ['image', 'im_size', 'im_id', 'gt_bbox', 'gt_class', 'is_difficult']
    num_max_boxes: 50
115
  dataset:
116
    !VOCDataSet
W
wangguanzhong 已提交
117
    dataset_dir: dataset/fruit
118
    anno_path: val.txt
119
    use_default_label: false
120
    with_background: false
121

122
TestReader:
123 124
  batch_size: 1
  dataset:
125
    !ImageFolder
126
    use_default_label: false
127
    with_background: false