bbox_util.py 4.7 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn.functional as F
import math


def xywh2xyxy(box):
    out = paddle.zeros_like(box)
    out[:, :, 0:2] = box[:, :, 0:2] - box[:, :, 2:4] / 2
    out[:, :, 2:4] = box[:, :, 0:2] + box[:, :, 2:4] / 2
    return out


def make_grid(h, w, dtype):
    yv, xv = paddle.meshgrid([paddle.arange(h), paddle.arange(w)])
    return paddle.stack((xv, yv), 2).cast(dtype=dtype)


def decode_yolo(box, anchor, downsample_ratio):
    """decode yolo box

    Args:
        box (Tensor): pred with the shape [b, h, w, na, 4]
        anchor (list): anchor with the shape [na, 2]
        downsample_ratio (int): downsample ratio, default 32
        scale (float): scale, default 1.
    
    Return:
        box (Tensor): decoded box, with the shape [b, h, w, na, 4]
    """
    h, w, na = box.shape[1:4]
    grid = make_grid(h, w, box.dtype).reshape((1, h, w, 1, 2))
    box[:, :, :, :, 0:2] = box[:, :, :, :, :2] + grid
    box[:, :, :, :, 0] = box[:, :, :, :, 0] / w
    box[:, :, :, :, 1] = box[:, :, :, :, 1] / h

    anchor = paddle.to_tensor(anchor)
    anchor = paddle.cast(anchor, box.dtype)
    anchor = anchor.reshape((1, 1, 1, na, 2))
    box[:, :, :, :, 2:4] = paddle.exp(box[:, :, :, :, 2:4]) * anchor
    box[:, :, :, :, 2] = box[:, :, :, :, 2] / (downsample_ratio * w)
    box[:, :, :, :, 3] = box[:, :, :, :, 3] / (downsample_ratio * h)
    return box


def iou_similarity(box1, box2, eps=1e-9):
    """Calculate iou of box1 and box2

    Args:
        box1 (Tensor): box with the shape [N, M1, 4]
        box2 (Tensor): box with the shape [N, M2, 4]
    
    Return:
        iou (Tensor): iou between box1 and box2 with the shape [N, M1, M2]
    """
    box1 = box1.unsqueeze(2)  # [N, M1, 4] -> [N, M1, 1, 4]
    box2 = box2.unsqueeze(1)  # [N, M2, 4] -> [N, 1, M2, 4]
    px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4]
    gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4]
    x1y1 = paddle.maximum(px1y1, gx1y1)
    x2y2 = paddle.minimum(px2y2, gx2y2)
    overlap = (x2y2 - x1y1).clip(0).prod(-1)
    area1 = (px2y2 - px1y1).clip(0).prod(-1)
    area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
    union = area1 + area2 - overlap + eps
    return overlap / union


def bbox_iou(box1, box2, giou=False, diou=False, ciou=False, eps=1e-9):
    """calculate the iou of box1 and box2

    Args:
        box1 (Tensor): box1 with the shape (N, M, 4)
        box2 (Tensor): box1 with the shape (N, M, 4)
        giou (bool): whether use giou or not, default False
        diou (bool): whether use diou or not, default False
        ciou (bool): whether use ciou or not, default False
        eps (float): epsilon to avoid divide by zero

    Return:
        iou (Tensor): iou of box1 and box1, with the shape (N, M)
    """
    px1y1, px2y2 = box1[:, :, 0:2], box1[:, :, 2:4]
    gx1y1, gx2y2 = box2[:, :, 0:2], box2[:, :, 2:4]
    x1y1 = paddle.maximum(px1y1, gx1y1)
    x2y2 = paddle.minimum(px2y2, gx2y2)

    overlap = (x2y2 - x1y1).clip(0).prod(-1)
    area1 = (px2y2 - px1y1).clip(0).prod(-1)
    area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
    union = area1 + area2 - overlap + eps
    iou = overlap / union
    if giou or ciou or diou:
        # convex w, h
        cwh = paddle.maximum(px2y2, gx2y2) - paddle.minimum(px1y1, gx1y1)
        if ciou or diou:
            # convex diagonal squared
            c2 = (cwh**2).sum(2) + eps
            # center distance
            rho2 = ((px1y1 + px2y2 - gx1y1 - gx2y2)**2).sum(2) / 4
            if diou:
                return iou - rho2 / c2
            elif ciou:
                wh1 = px2y2 - px1y1
                wh2 = gx2y2 - gx1y1
                w1, h1 = wh1[:, :, 0], wh1[:, :, 1] + eps
                w2, h2 = wh2[:, :, 0], wh2[:, :, 1] + eps
                v = (4 / math.pi**2) * paddle.pow(
                    paddle.atan(w1 / h1) - paddle.atan(w2 / h2), 2)
                alpha = v / (1 + eps - iou + v)
                alpha.stop_gradient = True
                return iou - (rho2 / c2 + v * alpha)
        else:
            c_area = cwh.prod(2) + eps
            return iou - (c_area - union) / c_area
    else:
        return iou