yolo_fpn.py 4.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from ppdet.core.workspace import register, serializable
20
from ..backbones.darknet import ConvBNLayer
Q
qingqing01 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116


class YoloDetBlock(nn.Layer):
    def __init__(self, ch_in, channel, norm_type, name):
        super(YoloDetBlock, self).__init__()
        self.ch_in = ch_in
        self.channel = channel
        assert channel % 2 == 0, \
            "channel {} cannot be divided by 2".format(channel)
        conv_def = [
            ['conv0', ch_in, channel, 1, '.0.0'],
            ['conv1', channel, channel * 2, 3, '.0.1'],
            ['conv2', channel * 2, channel, 1, '.1.0'],
            ['conv3', channel, channel * 2, 3, '.1.1'],
            ['route', channel * 2, channel, 1, '.2'],
        ]

        self.conv_module = nn.Sequential()
        for idx, (conv_name, ch_in, ch_out, filter_size,
                  post_name) in enumerate(conv_def):
            self.conv_module.add_sublayer(
                conv_name,
                ConvBNLayer(
                    ch_in=ch_in,
                    ch_out=ch_out,
                    filter_size=filter_size,
                    padding=(filter_size - 1) // 2,
                    norm_type=norm_type,
                    name=name + post_name))

        self.tip = ConvBNLayer(
            ch_in=channel,
            ch_out=channel * 2,
            filter_size=3,
            padding=1,
            norm_type=norm_type,
            name=name + '.tip')

    def forward(self, inputs):
        route = self.conv_module(inputs)
        tip = self.tip(route)
        return route, tip


@register
@serializable
class YOLOv3FPN(nn.Layer):
    __shared__ = ['norm_type']

    def __init__(self, feat_channels=[1024, 768, 384], norm_type='bn'):
        super(YOLOv3FPN, self).__init__()
        assert len(feat_channels) > 0, "feat_channels length should > 0"
        self.feat_channels = feat_channels
        self.num_blocks = len(feat_channels)
        self.yolo_blocks = []
        self.routes = []
        for i in range(self.num_blocks):
            name = 'yolo_block.{}'.format(i)
            yolo_block = self.add_sublayer(
                name,
                YoloDetBlock(
                    feat_channels[i],
                    channel=512 // (2**i),
                    norm_type=norm_type,
                    name=name))
            self.yolo_blocks.append(yolo_block)

            if i < self.num_blocks - 1:
                name = 'yolo_transition.{}'.format(i)
                route = self.add_sublayer(
                    name,
                    ConvBNLayer(
                        ch_in=512 // (2**i),
                        ch_out=256 // (2**i),
                        filter_size=1,
                        stride=1,
                        padding=0,
                        norm_type=norm_type,
                        name=name))
                self.routes.append(route)

    def forward(self, blocks):
        assert len(blocks) == self.num_blocks
        blocks = blocks[::-1]
        yolo_feats = []
        for i, block in enumerate(blocks):
            if i > 0:
                block = paddle.concat([route, block], axis=1)
            route, tip = self.yolo_blocks[i](block)
            yolo_feats.append(tip)

            if i < self.num_blocks - 1:
                route = self.routes[i](route)
                route = F.interpolate(route, scale_factor=2.)

        return yolo_feats