device_context.cc 11.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
11
#include "paddle/fluid/platform/device_context.h"
12

13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
#endif
22

Q
qijun 已提交
23 24 25
namespace paddle {
namespace platform {

D
dzhwinter 已提交
26 27
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
28
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
29 30 31 32 33 34
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
        "'Place' is not supported, Please re-compile with WITH_GPU "
        "option");
  }
35
  return it->second.get().get();
D
dzhwinter 已提交
36 37
}

38 39 40 41 42 43 44 45 46 47 48
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
                     return PtrType(new DevCtx(boost::get<PlaceType>(p)));
                   }));
C
chengduozh 已提交
49 50
}

D
dzhwinter 已提交
51 52 53
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
54
  std::set<Place> set;
Y
Yu Yang 已提交
55 56 57 58 59 60
  for (auto& p : places) {
    set.insert(p);
  }

  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
61
#ifdef PADDLE_WITH_MKLDNN
62
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
63
#else
64
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
65
#endif
Y
Yu Yang 已提交
66
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
67
#ifdef PADDLE_WITH_CUDA
68
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
69 70
#else
      PADDLE_THROW(
D
dzhwinter 已提交
71
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
72
          "option");
C
chengduoZH 已提交
73 74 75
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
76 77
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
78 79 80 81
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
82 83 84 85 86
#endif
    }
  }
}

87 88 89 90
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
91
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
92 93 94 95 96 97 98
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
99
Place CPUDeviceContext::GetPlace() const { return place_; }
100

101
#ifdef PADDLE_WITH_CUDA
102

Q
init  
qijun 已提交
103 104 105 106 107 108 109
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
110
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
111 112 113 114 115 116 117 118 119 120 121 122
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
Q
qijun 已提交
123
    return paddle::memory::Alloc(place_, num_bytes);
Q
init  
qijun 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  }

  void deallocate(void* buffer) const override {
    paddle::memory::Free(place_, buffer);
  }

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
      PADDLE_ENFORCE(
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
149
  CUDAPlace place_;
Q
init  
qijun 已提交
150 151
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
152
  mutable void* scratch_;
Q
init  
qijun 已提交
153 154 155
  mutable unsigned int* semaphore_;
};

156 157 158 159 160 161 162 163 164 165 166 167 168
class CudnnHolder {
 public:
  CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place)
      : workspace_(nullptr), workspace_len_(0), stream_(stream), place_(place) {
    PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
    PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_));
  }

  cudnnHandle_t cudnn_handle() const { return cudnn_handle_; }

  void RunFunc(const std::function<void(void*)>& cudnn_func,
               size_t required_workspace_len) {
    std::lock_guard<std::mutex> lock(mtx_);
S
sneaxiy 已提交
169
    RunFuncImpl(cudnn_func, required_workspace_len);
170 171 172 173 174 175 176 177 178 179
  }

  ~CudnnHolder() {
    PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
    if (workspace_ != nullptr) {
      paddle::memory::Free(place_, workspace_);
    }
  }

 private:
S
sneaxiy 已提交
180 181 182 183 184 185 186 187 188 189
  std::mutex& Mutex() { return mtx_; }

  void RunFuncImpl(const std::function<void(void*)>& cudnn_func,
                   size_t required_workspace_len) {
    if (required_workspace_len > workspace_len_) {
      ReallocateWorkspace(required_workspace_len);
    }
    cudnn_func(workspace_);
  }

190 191 192 193 194 195 196 197 198
  void ReallocateWorkspace(size_t required_workspace_len) {
    if (required_workspace_len <= workspace_len_) {
      return;
    }
    if (workspace_ != nullptr) {
      // Maybe someone is using the current workspace
      PADDLE_ENFORCE(cudaStreamSynchronize(*stream_));
      paddle::memory::Free(place_, workspace_);
    }
F
fengjiayi 已提交
199
    workspace_ = paddle::memory::Alloc(place_, required_workspace_len);
200 201 202
    workspace_len_ = required_workspace_len;
  }

S
sneaxiy 已提交
203 204
  friend class CudnnWorkspaceHandle;

205 206 207 208 209 210 211 212 213 214
  cudnnHandle_t cudnn_handle_;
  void* workspace_;
  size_t workspace_len_;

  const cudaStream_t* stream_;  // not owned;
  const CUDAPlace place_;

  std::mutex mtx_;
};

S
sneaxiy 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
CudnnWorkspaceHandle::CudnnWorkspaceHandle(CudnnHolder* holder)
    : holder_(holder) {}

void CudnnWorkspaceHandle::RunFunc(const std::function<void(void*)>& cudnn_func,
                                   size_t required_workspace_len) {
  // defer lock when the function is invoked first time
  BeginCallGuard();
  holder_->RunFuncImpl(cudnn_func, required_workspace_len);
}

void CudnnWorkspaceHandle::BeginCallGuard() {
  if (!guard_) {
    guard_.reset(new std::lock_guard<std::mutex>(holder_->Mutex()));
  }
}

void CudnnWorkspaceHandle::EndCallGuard() { guard_.reset(); }

233 234
CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
    : place_(place), cudnn_holder_(nullptr) {
235
  SetDeviceId(place_.device);
C
chengduo 已提交
236 237 238
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
Q
init  
qijun 已提交
239 240 241
  PADDLE_ENFORCE(cudaStreamCreate(&stream_));
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
242
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
243 244
  PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_));
  PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_));
D
dzhwinter 已提交
245
  if (dynload::HasCUDNN()) {
246
    cudnn_holder_.reset(new CudnnHolder(&stream_, place));
D
dzhwinter 已提交
247
  }
S
sneaxiy 已提交
248

C
chengduo 已提交
249 250 251 252 253 254 255 256 257 258
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

  LOG(INFO) << "device: " << place_.device
            << ", CUDA Capability: " << compute_capability_
            << ", Driver Version: " << driver_version_ / 1000 << "."
            << (driver_version_ % 100) / 10
            << ", Runtime Version: " << runtime_version_ / 1000 << "."
            << (runtime_version_ % 100) / 10;

S
sneaxiy 已提交
259
  callback_manager_.reset(new StreamCallbackManager(stream_));
260 261 262 263
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
264
  Wait();
S
sneaxiy 已提交
265
  WaitStreamCallback();
266
  PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_));
267 268
  eigen_stream_.reset();
  eigen_device_.reset();
Q
init  
qijun 已提交
269
  PADDLE_ENFORCE(cudaStreamDestroy(stream_));
270 271
}

L
liaogang 已提交
272
Place CUDADeviceContext::GetPlace() const { return place_; }
273

L
liaogang 已提交
274
void CUDADeviceContext::Wait() const {
Q
init  
qijun 已提交
275
  PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
276 277 278
  PADDLE_ENFORCE(cudaGetLastError());
}

K
Kexin Zhao 已提交
279
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
280
  return compute_capability_;
K
Kexin Zhao 已提交
281 282
}

283
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
284
  return multi_process_ * max_threads_per_mp_;
285 286
}

287 288 289 290
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
  return eigen_device_.get();
}

291
cublasHandle_t CUDADeviceContext::cublas_handle() const {
292 293 294
  return cublas_handle_;
}

295 296 297 298
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return cudnn_holder_->cudnn_handle();
}

S
sneaxiy 已提交
299 300 301 302
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
  return CudnnWorkspaceHandle(cudnn_holder_.get());
}

303 304 305 306
void CUDADeviceContext::RunCudnnFuncWithWorkspace(
    const std::function<void(void*)>& cudnn_func, size_t workspace_len) const {
  cudnn_holder_->RunFunc(cudnn_func, workspace_len);
}
307

308
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
309

C
chengduoZH 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
324
#endif
Q
qijun 已提交
325

T
tensor-tang 已提交
326 327
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
328 329 330
    : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() {
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
331 332
}

S
Sylwester Fraczek 已提交
333 334 335
namespace {
// Current thread's id.
thread_local int cur_thread_id = 0;
T
tensor-tang 已提交
336 337
}

S
Sylwester Fraczek 已提交
338 339 340
void set_cur_thread_id(int tid) { cur_thread_id = tid; }
int get_cur_thread_id(void) { return cur_thread_id; }

341 342
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
343 344 345 346
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;

  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
347

348
  std::lock_guard<std::mutex> lock(*p_mutex_.get());
T
tensor-tang 已提交
349

350 351
  // Find KeyBlob for current thread
  auto map_it = pMap->find(tid);
T
tensor-tang 已提交
352

353 354 355 356
  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
    pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
    (*pMap)[tid] = pBlob;
357
  } else {
358
    pBlob = map_it->second;
359
  }
T
tensor-tang 已提交
360

361 362 363 364 365 366 367 368 369 370
  // Find Key in found (or newly created) KeyBlob
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) {
    (*pBlob)[name] = data;  // create new blob
  } else {
    key_it->second = data;  // set data to existing blob
  }

  // lock will be automatically released when out of scope
371
  return;
T
tensor-tang 已提交
372 373
}

374 375
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
376 377
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
378

379
  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
380

381 382 383 384 385 386 387 388 389 390 391
  std::lock_guard<std::mutex> lock(*p_mutex_.get());

  // Find KeyBlob for current thread firstly
  auto map_it = pMap->find(tid);
  if (map_it == pMap->end()) return nullptr;
  pBlob = map_it->second;

  // Find Blob via name
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) return nullptr;
392

393 394
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
395 396 397 398
}

#endif

Q
qijun 已提交
399
}  // namespace platform
Q
qijun 已提交
400
}  // namespace paddle