README_en.md 12.0 KB
Newer Older
1 2 3
English | [简体中文](README_cn.md)


K
Kaipeng Deng 已提交
4
# Product news
W
wangguanzhong 已提交
5

K
Kaipeng Deng 已提交
6 7
- 2021.11.03: Release [release/2.3](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.3) version. Release mobile object detection model ⚡[PP-PicoDet](configs/picodet), mobile keypoint detection model ⚡[PP-TinyPose](configs/keypoint/tiny_pose). Release object detection models, including [Swin-Transformer](configs/faster_rcnn), [TOOD](configs/tood), [GFL](configs/gfl), release [Sniper](configs/sniper) tiny object detection models and optimized [PP-YOLO-EB](configs/ppyolo) model for EdgeBoard. Release mobile keypoint detection model [Lite HRNet](configs/keypoint).
- 2021.08.10: Release [release/2.2](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.2) version. Release Transformer object detection models, including [DETR](configs/detr), [Deformable DETR](configs/deformable_detr), [Sparse RCNN](configs/sparse_rcnn). Release [keypoint detection](configs/keypoint) models, including DarkHRNet and model trained on MPII dataset. Release [head-tracking](configs/mot/headtracking21) and [vehicle-tracking](configs/mot/vehicle) multi-object tracking models.
K
Kaipeng Deng 已提交
8
- 2021.05.20: Release [release/2.1]((https://github.com/PaddlePaddle/Paddleetection/tree/release/2.1) version. Release [Keypoint Detection](configs/keypoint), including HigherHRNet and HRNet, [Multi-Object Tracking](configs/mot), including DeepSORT,JDE and FairMOT. Release model compression for PPYOLO series models.Update documents such as [EXPORT ONNX MODEL](deploy/EXPORT_ONNX_MODEL.md).
9 10


11 12
# Introduction

K
Kaipeng Deng 已提交
13
PaddleDetection is an end-to-end object detection development kit based on PaddlePaddle, which implements varied mainstream object detection, instance segmentation, tracking and keypoint detection algorithms in modular designwhich with configurable modules such as network components, data augmentations and losses, and release many kinds SOTA industry practice models, integrates abilities of model compression and cross-platform high-performance deployment, aims to help developers in the whole end-to-end development in a faster and better way.
14

K
Kaipeng Deng 已提交
15
### PaddleDetection provides image processing capabilities such as object detection, instance segmentation, multi-object tracking, keypoint detection and etc.
16

K
Kaipeng Deng 已提交
17 18
<div width="1000" align="center">
  <img src="docs/images/ppdet.gif"/>
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
</div>


### Features

- **Rich Models**
PaddleDetection provides rich of models, including **100+ pre-trained models** such as **object detection**, **instance segmentation**, **face detection** etc. It covers a variety of **global competition champion** schemes.

- **Highly Flexible:**
Components are designed to be modular. Model architectures, as well as data preprocess pipelines and optimization strategies, can be easily customized with simple configuration changes.

- **Production Ready:**
From data augmentation, constructing models, training, compression, depolyment, get through end to end, and complete support for multi-architecture, multi-device deployment for **cloud and edge device**.

- **High Performance:**
Based on the high performance core of PaddlePaddle, advantages of training speed and memory occupation are obvious. FP16 training and multi-machine training are supported as well.

#### Overview of Kit Structures

K
Kaipeng Deng 已提交
38
<table align="center">
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Architectures</b>
      </td>
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Components</b>
      </td>
      <td>
        <b>Data Augmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
        <ul><li><b>Two-Stage Detection</b></li>
          <ul>
            <li>Faster RCNN</li>
            <li>FPN</li>
            <li>Cascade-RCNN</li>
            <li>Libra RCNN</li>
            <li>Hybrid Task RCNN</li>
K
Kaipeng Deng 已提交
63
            <li>PSS-Det</li>
64 65 66 67 68 69 70
          </ul>
        </ul>
        <ul><li><b>One-Stage Detection</b></li>
          <ul>
            <li>RetinaNet</li>
            <li>YOLOv3</li>
            <li>YOLOv4</li>  
K
Kaipeng Deng 已提交
71
            <li>PP-YOLOv1/v2/Tiny</li>
72 73 74 75 76 77 78 79
            <li>SSD</li>
          </ul>
        </ul>
        <ul><li><b>Anchor Free</b></li>
          <ul>
            <li>CornerNet-Squeeze</li>
            <li>FCOS</li>  
            <li>TTFNet</li>
K
Kaipeng Deng 已提交
80
            <li>PicoDet</li>
81 82 83 84 85 86 87 88 89 90
          </ul>
        </ul>
        <ul>
          <li><b>Instance Segmentation</b></li>
            <ul>
             <li>Mask RCNN</li>
             <li>SOLOv2</li>
            </ul>
        </ul>
        <ul>
K
Kaipeng Deng 已提交
91
          <li><b>Face-Detction</b></li>
92 93 94 95 96 97
            <ul>
             <li>FaceBoxes</li>
             <li>BlazeFace</li>
             <li>BlazeFace-NAS</li>
            </ul>
        </ul>
K
Kaipeng Deng 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        <ul>
          <li><b>Transformer</b></li>
            <ul>
             <li>DETR/Deformable DETR</li>
             <li>Sparse RCNN</li>
             <li>Swin Transformer</li>
            </ul>
        </ul>
        <ul>
          <li><b>Multi-Object-Tracking</b></li>
            <ul>
             <li>JDE</li>
             <li>FairMOT</li>
             <li>DeepSort</li>
            </ul>
        </ul>
        <ul>
          <li><b>KeyPoint-Detection</b></li>
            <ul>
             <li>HRNet</li>
             <li>HigherHRNet</li>
            </ul>
        </ul>
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
      </td>
      <td>
        <ul>
          <li>ResNet(&vd)</li>
          <li>ResNeXt(&vd)</li>
          <li>SENet</li>
          <li>Res2Net</li>
          <li>HRNet</li>
          <li>Hourglass</li>
          <li>CBNet</li>
          <li>GCNet</li>
          <li>DarkNet</li>
          <li>CSPDarkNet</li>
          <li>VGG</li>
          <li>MobileNetv1/v3</li>  
          <li>GhostNet</li>
          <li>Efficientnet</li>  
K
Kaipeng Deng 已提交
138
          <li>BlazeNet</li>  
139 140 141 142 143 144 145 146 147 148 149
        </ul>
      </td>
      <td>
        <ul><li><b>Common</b></li>
          <ul>
            <li>Sync-BN</li>
            <li>Group Norm</li>
            <li>DCNv2</li>
            <li>Non-local</li>
          </ul>  
        </ul>
K
Kaipeng Deng 已提交
150 151 152 153 154
        <ul><li><b>KeyPoint</b></li>
          <ul>
            <li>DarkPose</li>
          </ul>  
        </ul>
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        <ul><li><b>FPN</b></li>
          <ul>
            <li>BiFPN</li>
            <li>BFP</li>  
            <li>HRFPN</li>
            <li>ACFPN</li>
          </ul>  
        </ul>  
        <ul><li><b>Loss</b></li>
          <ul>
            <li>Smooth-L1</li>
            <li>GIoU/DIoU/CIoU</li>  
            <li>IoUAware</li>
          </ul>  
        </ul>  
        <ul><li><b>Post-processing</b></li>
          <ul>
            <li>SoftNMS</li>
            <li>MatrixNMS</li>  
          </ul>  
        </ul>
        <ul><li><b>Speed</b></li>
          <ul>
            <li>FP16 training</li>
            <li>Multi-machine training </li>  
          </ul>  
        </ul>  
      </td>
      <td>
        <ul>
          <li>Resize</li>  
K
Kaipeng Deng 已提交
186
          <li>Lighting</li>  
187 188 189 190 191 192
          <li>Flipping</li>  
          <li>Expand</li>
          <li>Crop</li>
          <li>Color Distort</li>  
          <li>Random Erasing</li>  
          <li>Mixup </li>
K
Kaipeng Deng 已提交
193
          <li>Mosaic</li>
194 195 196
          <li>Cutmix </li>
          <li>Grid Mask</li>
          <li>Auto Augment</li>  
K
Kaipeng Deng 已提交
197
          <li>Random Perspective</li>  
198 199 200 201 202 203 204 205 206 207 208
        </ul>  
      </td>  
    </tr>


</td>
    </tr>
  </tbody>
</table>

#### Overview of Model Performance
K
Kaipeng Deng 已提交
209 210

The relationship between COCO mAP and FPS on Tesla V100 of representative models of each server side architectures and backbones.
211 212 213

<div align="center">
  <img src="docs/images/fps_map.png" />
K
Kaipeng Deng 已提交
214
  </div>
215

K
Kaipeng Deng 已提交
216
  **NOTE:**
217

K
Kaipeng Deng 已提交
218
  - `CBResNet stands` for `Cascade-Faster-RCNN-CBResNet200vd-FPN`, which has highest mAP on COCO as 53.3%
219

K
Kaipeng Deng 已提交
220
  - `Cascade-Faster-RCNN` stands for `Cascade-Faster-RCNN-ResNet50vd-DCN`, which has been optimized to 20 FPS inference speed when COCO mAP as 47.8% in PaddleDetection models
221

K
Kaipeng Deng 已提交
222
  - `PP-YOLO` achieves mAP of 45.9% on COCO and 72.9FPS on Tesla V100. Both precision and speed surpass [YOLOv4](https://arxiv.org/abs/2004.10934)
223

K
Kaipeng Deng 已提交
224
  - `PP-YOLO v2` is optimized version of `PP-YOLO` which has mAP of 49.5% and 68.9FPS on Tesla V100
225

K
Kaipeng Deng 已提交
226 227 228 229 230 231 232 233 234
  - All these models can be get in [Model Zoo](#ModelZoo)

The relationship between COCO mAP and FPS on Qualcomm Snapdragon 865 of representative mobile side models.

<div align="center">
  <img src="docs/images/mobile_fps_map.png" width=600 />
</div>

**NOTE:**
235

K
Kaipeng Deng 已提交
236 237
- All data tested on Qualcomm Snapdragon 865(4\*A77 + 4\*A55) processor with batch size of 1 and CPU threads of 4, and use NCNN library in testing, benchmark scripts is publiced at [MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark)
- [PP-PicoDet](configs/picodet) and [PP-YOLO-Tiny](configs/ppyolo) are developed and released by PaddleDetection, other models are not provided in PaddleDetection.
238 239 240 241 242

## Tutorials

### Get Started

qq_30618961's avatar
qq_30618961 已提交
243 244 245
- [Installation guide](docs/tutorials/INSTALL.md)
- [Prepare dataset](docs/tutorials/PrepareDataSet_en.md)
- [Quick start on PaddleDetection](docs/tutorials/GETTING_STARTED.md)
246 247 248 249 250


### Advanced Tutorials

- Parameter configuration
qq_30618961's avatar
qq_30618961 已提交
251 252
  - [Parameter configuration for RCNN model](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation_en.md)
  - [Parameter configuration for PP-YOLO model](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation_en.md)
253 254 255 256 257

- Model Compression(Based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim))
  - [Prune/Quant/Distill](configs/slim)

- Inference and deployment
qq_30618961's avatar
qq_30618961 已提交
258 259
  - [Export model for inference](deploy/EXPORT_MODEL_en.md)
  - [Paddle Inference](deploy/README_en.md)
W
wangguanzhong 已提交
260 261
      - [Python inference](deploy/python)
      - [C++ inference](deploy/cpp)
G
Guanghua Yu 已提交
262
  - [Paddle-Lite](deploy/lite)
W
wangguanzhong 已提交
263
  - [Paddle Serving](deploy/serving)
qq_30618961's avatar
qq_30618961 已提交
264 265
  - [Export ONNX model](deploy/EXPORT_ONNX_MODEL_en.md)
  - [Inference benchmark](deploy/BENCHMARK_INFER_en.md)
266 267

- Advanced development
qq_30618961's avatar
qq_30618961 已提交
268 269
  - [New data augmentations](docs/advanced_tutorials/READER_en.md)
  - [New detection algorithms](docs/advanced_tutorials/MODEL_TECHNICAL_en.md)
270 271 272 273 274 275 276


## Model Zoo

- Universal object detection
  - [Model library and baselines](docs/MODEL_ZOO_cn.md)
  - [PP-YOLO](configs/ppyolo/README.md)
qq_30618961's avatar
qq_30618961 已提交
277 278 279 280
  - [Enhanced Anchor Free model--TTFNet](configs/ttfnet/README_en.md)
  - [Mobile models](static/configs/mobile/README_en.md)
  - [676 classes of object detection](static/docs/featured_model/LARGE_SCALE_DET_MODEL_en.md)
  - [Two-stage practical PSS-Det](configs/rcnn_enhance/README_en.md)
281
  - [SSLD pretrained models](docs/feature_models/SSLD_PRETRAINED_MODEL_en.md)
282 283 284
- Universal instance segmentation
  - [SOLOv2](configs/solov2/README.md)
- Rotation object detection
qq_30618961's avatar
qq_30618961 已提交
285
  - [S2ANet](configs/dota/README_en.md)
G
Guanghua Yu 已提交
286 287
- [Keypoint detection](configs/keypoint)
  - HigherHRNet
288
  - HRNet
289
  - LiteHRNet
G
Guanghua Yu 已提交
290 291 292 293
- [Multi-Object Tracking](configs/mot/README.md)
  - [DeepSORT](configs/mot/deepsort/README.md)
  - [JDE](configs/mot/jde/README.md)
  - [FairMOT](configs/mot/fairmot/README.md)
294
- Vertical field
qq_30618961's avatar
qq_30618961 已提交
295
  - [Face detection](configs/face_detection/README_en.md)
296 297 298
  - [Pedestrian detection](configs/pedestrian/README.md)
  - [Vehicle detection](configs/vehicle/README.md)
- Competition Plan
qq_30618961's avatar
qq_30618961 已提交
299 300
  - [Objects365 2019 Challenge champion model](static/docs/featured_model/champion_model/CACascadeRCNN_en.md)
  - [Best single model of Open Images 2019-Object Detection](static/docs/featured_model/champion_model/OIDV5_BASELINE_MODEL_en.md)
301 302 303 304 305 306 307

## Applications

- [Christmas portrait automatic generation tool](static/application/christmas)

## Updates

K
Kaipeng Deng 已提交
308
Updates please refer to [change log](docs/CHANGELOG_en.md) for details.
309 310 311 312 313 314 315 316 317 318


## License

PaddleDetection is released under the [Apache 2.0 license](LICENSE).


## Contributing

Contributions are highly welcomed and we would really appreciate your feedback!!
319
- Thanks [Mandroide](https://github.com/Mandroide) for cleaning the code and unifying some function interface.
320
- Thanks [FL77N](https://github.com/FL77N/) for contributing the code of `Sparse-RCNN` model.
W
Wenyu 已提交
321
- Thanks [Chen-Song](https://github.com/Chen-Song) for contributing the code of `Swin Faster-RCNN` model.
322 323 324 325 326 327 328 329 330 331 332

## Citation

```
@misc{ppdet2019,
title={PaddleDetection, Object detection and instance segmentation toolkit based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleDetection}},
year={2019}
}
```