recurrent_op_test.cc 12.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
  Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at
  http://www.apache.org/licenses/LICENSE-2.0
  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License.
*/

Y
Yan Chunwei 已提交
14 15
#include "paddle/operators/recurrent_op.h"

Y
Yan Chunwei 已提交
16 17 18
#include <glog/logging.h>
#include <gtest/gtest.h>

Y
Yi Wang 已提交
19
#include "paddle/framework/ddim.h"
Y
Yan Chunwei 已提交
20 21 22
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
Y
Yan Chunwei 已提交
23
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
24 25 26 27

namespace paddle {
namespace operators {

Y
Yi Wang 已提交
28 29 30
using framework::make_ddim;
using framework::DDim;

Y
Yan Chunwei 已提交
31
class RecurrentOpTest : public ::testing::Test {
32
 protected:
Y
Yan Chunwei 已提交
33 34 35 36 37 38 39 40 41 42 43 44
  virtual void SetUp() override {
    CreateGlobalVariables();
    CreateStepNet();
    CreateRNNOp();
  }

  virtual void TearDown() override {}

  void CreateGlobalVariables() {
    // create input, and init content
    LOG(INFO) << "create global variable x";
    for (auto inlink : std::vector<std::string>{"x", "x0", "x1", "h"}) {
Y
Yu Yang 已提交
45
      Variable* x = scope_.NewVar(inlink);
Y
Yan Chunwei 已提交
46 47 48 49 50 51
      DDim dims = make_ddim(std::vector<int>{
          10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
      x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
    }
    // create output alias just for test
    for (auto inlink : std::vector<std::string>{"h@alias"}) {
Y
Yu Yang 已提交
52
      Variable* x = scope_.NewVar(inlink);
Y
Yan Chunwei 已提交
53 54 55 56 57 58
      DDim dims =
          make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/});
      x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
    }

    LOG(INFO) << "create global variable w";
Y
Yu Yang 已提交
59
    Variable* w = scope_.NewVar("rnn/w");
Y
Yan Chunwei 已提交
60 61 62
    w->GetMutable<Tensor>()->mutable_data<float>(
        make_ddim(std::vector<int>{30, 30}), platform::CPUPlace());

63
    for (auto boot : std::vector<std::string>{"h_boot"}) {
Y
Yan Chunwei 已提交
64
      LOG(INFO) << "create global variable " << boot;
Y
Yu Yang 已提交
65
      Variable* h_boot = scope_.NewVar(boot);
Y
Yan Chunwei 已提交
66 67 68 69 70 71
      h_boot->GetMutable<Tensor>()->mutable_data<float>(
          make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/}),
          platform::CPUPlace());
    }

    LOG(INFO) << "create variable step_scopes";
Y
Yu Yang 已提交
72
    scope_.NewVar("step_scopes");
Y
Yan Chunwei 已提交
73 74

    LOG(INFO) << "create variable h";
Y
Yu Yang 已提交
75
    scope_.NewVar("h");
Y
Yan Chunwei 已提交
76 77 78
  }

  void CreateRNNOp() {
Y
Yi Wang 已提交
79
    framework::OpDesc op_desc;
Y
Yan Chunwei 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

    op_desc.set_type("recurrent_op");
    // inlinks 0
    op_desc.add_inputs("x");
    op_desc.add_inputs("x0");
    op_desc.add_inputs("x1");
    // boot_memories 3
    op_desc.add_inputs("h_boot");
    // step net 5
    op_desc.add_inputs("step_net");
    // outlinks 6
    op_desc.add_outputs("h");
    // step scopes 7
    op_desc.add_outputs("step_scopes");

    auto _input_format = std::vector<int>{
        0,  // in_link
        3,  // memories
98
        4   // step_net
Y
Yan Chunwei 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    };
    auto input_format = op_desc.add_attrs();
    input_format->set_name("input_format");
    input_format->set_type(paddle::framework::AttrType::INTS);
    for (auto i : _input_format) {
      input_format->add_ints(i);
    }

    auto output_format = op_desc.add_attrs();
    output_format->set_name("output_format");
    output_format->set_type(paddle::framework::AttrType::INTS);
    for (auto i : std::vector<int>{0, 1, 2}) {
      output_format->add_ints(i);
    }

    auto inlink_alias = op_desc.add_attrs();
    inlink_alias->set_name("inlink_alias");
    inlink_alias->set_type(paddle::framework::AttrType::STRINGS);

    auto outlink_alias = op_desc.add_attrs();
    outlink_alias->set_name("outlink_alias");
    outlink_alias->set_type(paddle::framework::AttrType::STRINGS);

    auto pre_memories = op_desc.add_attrs();
    pre_memories->set_name("pre_memories");
    pre_memories->set_type(paddle::framework::AttrType::STRINGS);

    auto memories = op_desc.add_attrs();
    memories->set_name("memories");
    memories->set_type(paddle::framework::AttrType::STRINGS);

    // create inlink_alias
    for (const auto& item :
         std::vector<std::string>{"x@alias", "x0@alias", "x1@alias"}) {
      inlink_alias->add_strings(item);
    }
    // pre memories
136
    for (const auto& item : std::vector<std::string>{"rnn/h@pre"}) {
Y
Yan Chunwei 已提交
137 138 139
      pre_memories->add_strings(item);
    }
    // memories
140
    for (const auto& item : std::vector<std::string>{"rnn/h"}) {
Y
Yan Chunwei 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154
      memories->add_strings(item);
    }
    // output alias
    for (const auto& item : std::vector<std::string>{"h@alias"}) {
      outlink_alias->add_strings(item);
    }

    rnn_op_ = OpRegistry::CreateOp(op_desc);

    LOG(INFO) << "rnn_op finish init";
  }

  void CreateStepNet() {
    LOG(INFO) << "create variable step_net";
Y
Yu Yang 已提交
155
    Variable* var = scope_.NewVar("step_net");
Y
Yan Chunwei 已提交
156 157 158 159 160
    auto net = var->GetMutable<NetOp>();
    net->AddOp(
        OpRegistry::CreateOp("mul", {"rnn/h@pre", "rnn/w"}, {"rnn/s"}, {}));

    net->AddOp(
161
        OpRegistry::CreateOp("add_two", {"x@alias", "rnn/s"}, {"rnn/h"}, {}));
Y
Yan Chunwei 已提交
162 163 164 165
    net->CompleteAddOp();
  }

  // father scope
Y
Yu Yang 已提交
166
  Scope scope_;
Y
Yan Chunwei 已提交
167 168 169 170 171 172 173 174 175 176
  std::shared_ptr<OperatorBase> rnn_op_;
};

TEST_F(RecurrentOpTest, Run) {
  platform::CPUDeviceContext ctx;
  rnn_op_->InferShape(scope_);
  rnn_op_->Run(scope_, ctx);
}

class RecurrentGradientAlgorithmTest : public ::testing::Test {
177
 protected:
Y
Yan Chunwei 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
  virtual void SetUp() override {
    CreateGlobalVariables();
    CreateStepScopes();
    CreateStepNet();
    CreateRNNGradientAlgorithm();

    // segment inputs
    SegmentInputs();
    // link forward memories
    LinkeMemories();
  }

  virtual void TearDown() override {}

  void CreateGlobalVariables() {
    // inputs: x
    LOG(INFO) << "create global variable x";
Y
Yu Yang 已提交
195
    Variable* x = scope_.NewVar("x");
Y
Yan Chunwei 已提交
196 197 198 199 200
    DDim dims =
        make_ddim({10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
    x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
    // inputs: h_boot
    LOG(INFO) << "create global variable h_boot";
Y
Yu Yang 已提交
201
    Variable* h_boot = scope_.NewVar("h_boot");
Y
Yan Chunwei 已提交
202 203 204 205
    h_boot->GetMutable<Tensor>()->mutable_data<float>(
        make_ddim({20 /*batch size*/, 30 /*input dim*/}), platform::CPUPlace());
    // inputs: w
    LOG(INFO) << "create global variable w";
Y
Yu Yang 已提交
206
    Variable* w = scope_.NewVar("rnn/w");
Y
Yan Chunwei 已提交
207 208 209 210
    w->GetMutable<Tensor>()->mutable_data<float>(make_ddim({30, 30}),
                                                 platform::CPUPlace());
    // inputs: h_grad
    LOG(INFO) << "create variable h_grad";
Y
Yu Yang 已提交
211
    Variable* dh = scope_.NewVar("h_grad");
Y
Yan Chunwei 已提交
212 213 214 215
    dh->GetMutable<Tensor>()->mutable_data<float>(make_ddim({10, 20, 30}),
                                                  platform::CPUPlace());
    // inputs: step_scopes
    LOG(INFO) << "create variable step_scopes";
Y
Yu Yang 已提交
216
    scope_.NewVar("step_scopes");
Y
Yan Chunwei 已提交
217 218
    // inputs: step_net
    LOG(INFO) << "create variable step_net";
Y
Yu Yang 已提交
219
    scope_.NewVar("step_net");
Y
Yan Chunwei 已提交
220 221
    // outputs: w_grad
    LOG(INFO) << "create global variable w_grad";
Y
Yu Yang 已提交
222
    scope_.NewVar("rnn/w_grad");
Y
Yan Chunwei 已提交
223 224
    // outputs: x_grad
    LOG(INFO) << "create global variable x_grad";
Y
Yu Yang 已提交
225
    scope_.NewVar("x_grad");
Y
Yan Chunwei 已提交
226 227
    // outputs: h_boot_grad
    LOG(INFO) << "create global variable h_boot_grad";
Y
Yu Yang 已提交
228
    scope_.NewVar("h_boot_grad");
Y
Yan Chunwei 已提交
229 230 231
  }

  void CreateStepScopes() {
Y
Yu Yang 已提交
232 233
    auto step_scopes =
        scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
Y
Yan Chunwei 已提交
234
    for (int i = 0; i < 10; ++i) {
Y
Yu Yang 已提交
235 236 237 238 239
      auto& scope = scope_.NewScope();
      auto pre_t = scope.NewVar("rnn/pre_h")->GetMutable<Tensor>();
      pre_t->mutable_data<float>({20, 30}, platform::CPUPlace());
      auto tensor = scope.NewVar("rnn/h")->GetMutable<Tensor>();
      tensor->mutable_data<float>({20, 30}, platform::CPUPlace());
Y
Yan Chunwei 已提交
240 241

      // for unit test of ConcatOutputs
Y
Yu Yang 已提交
242 243
      auto xg = scope.NewVar("rnn/x_grad")->GetMutable<Tensor>();
      xg->mutable_data<float>({20, 30}, platform::CPUPlace());
Y
Yan Chunwei 已提交
244

Y
Yu Yang 已提交
245
      step_scopes->emplace_back(&scope);
Y
Yan Chunwei 已提交
246 247 248
    }

    // last time step
249
    auto g = (*step_scopes)[9]->NewVar("rnn/h_pre_grad")->GetMutable<Tensor>();
Y
Yu Yang 已提交
250
    g->mutable_data<float>({20, 30}, platform::CPUPlace());
Y
Yan Chunwei 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  }

  void CreateRNNGradientAlgorithm() {
    std::unique_ptr<rnn::Argument> arg(new rnn::Argument());
    arg->step_net = "step_net";
    arg->step_scopes = "step_scopes";
    rnn::Link inlink;
    inlink.external = "h_grad";
    inlink.internal = "rnn/h_grad";
    arg->inlinks = std::vector<rnn::Link>{inlink};

    rnn::Link outlink;
    outlink.external = "x_grad";
    outlink.internal = "rnn/x_grad";
    arg->outlinks = std::vector<rnn::Link>{outlink};

    rnn::MemoryAttr mem_attr;
    mem_attr.pre_var = "rnn/h_pre_grad";
    mem_attr.var = "rnn/h_grad";
    mem_attr.boot_var = "h_boot_grad";
    arg->memories = std::vector<rnn::MemoryAttr>{mem_attr};

    rnn_grad_algo_.Init(std::move(arg));
  }

  void CreateStepNet() {
    LOG(INFO) << "create variable step_net";
Y
Yu Yang 已提交
278
    Variable* var = scope_.NewVar("step_net");
Y
Yan Chunwei 已提交
279
    auto net = var->GetMutable<NetOp>();
280 281
    net->AddOp(OpRegistry::CreateOp("mul", {"rnn/h_pre", "rnn/w", "rnn/s_grad"},
                                    {"rnn/h_pre_grad", "rnn/w_grad"}, {}));
Y
Yan Chunwei 已提交
282

283 284
    net->AddOp(OpRegistry::CreateOp("add_two", {"rnn/h_grad"},
                                    {"rnn/x_grad", "rnn/s_grad"}, {}));
Y
Yan Chunwei 已提交
285 286 287 288 289 290 291 292 293 294 295
    net->CompleteAddOp();
  }

  void SegmentInputs() {
    LOG(INFO) << "segment inputs";
    std::vector<std::string> inlinks = {"x"};
    std::vector<std::string> inlinks_alias = {"rnn/x"};

    rnn::Link inlink;
    inlink.external = "x";
    inlink.internal = "rnn/x";
Y
Yu Yang 已提交
296 297
    auto step_scopes =
        scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
298
    rnn::SegmentInputs(*step_scopes, std::vector<rnn::Link>{inlink}, 10,
D
dangqingqing 已提交
299
                       true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
300 301 302 303 304 305 306 307 308 309
  }

  void LinkeMemories() {
    LOG(INFO) << "link memories";
    rnn::MemoryAttr mem_attr;
    mem_attr.pre_var = "rnn/h_pre";
    mem_attr.var = "rnn/h";
    mem_attr.boot_var = "boot_h";
    std::vector<rnn::MemoryAttr> memories;
    memories.push_back(mem_attr);
Y
Yu Yang 已提交
310 311
    auto step_scopes =
        scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
Y
Yan Chunwei 已提交
312
    for (int i = 1; i < 10; ++i) {
313 314
      rnn::LinkMemories(*step_scopes, memories, i, -1,
                        true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
315 316 317
    }
  }

Y
Yu Yang 已提交
318
  Scope scope_;
Y
Yan Chunwei 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
  RecurrentGradientAlgorithm rnn_grad_algo_;
};

// TEST_F(RecurrentGradientAlgorithmTest, Run) {
//   platform::CPUDeviceContext ctx;
//   rnn_grad_algo_.Run(scope_, ctx);
// }

}  // namespace operators
}  // namespace paddle

TEST(RecurrentOp, LinkMemories) {
  using namespace paddle::framework;
  using namespace paddle::platform;
  using namespace paddle::operators;

  // create and init step scopes
D
dangqingqing 已提交
336
  size_t len = 10;
Y
Yu Yang 已提交
337
  std::vector<Scope*> step_scopes;
D
dangqingqing 已提交
338
  for (size_t i = 0; i < len; ++i) {
Y
Yu Yang 已提交
339
    auto scope = new Scope();
340 341
    scope->NewVar("pre_h");
    auto tensor = scope->NewVar("h")->GetMutable<Tensor>();
Y
Yu Yang 已提交
342
    float* data = tensor->mutable_data<float>({15, 20}, CPUPlace());
D
dangqingqing 已提交
343
    for (size_t j = 0; j < 15 * 20; ++j) {
D
dangqingqing 已提交
344
      data[j] = rand() * (1. / (double)RAND_MAX);
Y
Yan Chunwei 已提交
345 346 347 348 349 350 351 352 353 354 355 356
    }
    step_scopes.push_back(scope);
  }

  // create MemoryAttr
  rnn::MemoryAttr mem_attr;
  mem_attr.pre_var = "pre_h";
  mem_attr.var = "h";
  mem_attr.boot_var = "boot_h";
  std::vector<rnn::MemoryAttr> memories;
  memories.push_back(mem_attr);

D
dangqingqing 已提交
357
  for (size_t i = 1; i < len; ++i) {
D
dangqingqing 已提交
358
    rnn::LinkMemories(step_scopes, memories, i, -1, false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
359 360
  }
  // check
D
dangqingqing 已提交
361
  for (size_t i = 0; i < len - 1; ++i) {
Y
Yan Chunwei 已提交
362
    const float* a =
363
        step_scopes[i]->FindVar("h")->GetMutable<Tensor>()->data<float>();
Y
Yan Chunwei 已提交
364
    const float* b = step_scopes[i + 1]
365
                         ->FindVar("pre_h")
Y
Yan Chunwei 已提交
366 367
                         ->GetMutable<Tensor>()
                         ->data<float>();
368 369
    for (size_t j = 0; j < 15 * 20; ++j) {
      ASSERT_FLOAT_EQ(a[j], b[j]);
Y
Yan Chunwei 已提交
370 371 372 373
    }
  }

  for (int i = len - 2; i >= 0; --i) {
D
dangqingqing 已提交
374
    rnn::LinkMemories(step_scopes, memories, i, 1, false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
375 376 377
  }
  // check
  for (int i = len - 2; i >= 0; --i) {
378 379 380 381
    const float* a =
        step_scopes[i]->FindVar("pre_h")->GetMutable<Tensor>()->data<float>();
    const float* b =
        step_scopes[i + 1]->FindVar("h")->GetMutable<Tensor>()->data<float>();
382 383
    for (size_t j = 0; j < 15 * 20; ++j) {
      ASSERT_FLOAT_EQ(a[j], b[j]);
Y
Yan Chunwei 已提交
384 385
    }
  }
Y
Yu Yang 已提交
386 387 388 389

  for (auto s : step_scopes) {
    delete s;
  }
Y
Yan Chunwei 已提交
390 391 392 393
}

USE_OP(add_two);
USE_OP(mul);
394
USE_OP_WITHOUT_KERNEL(recurrent_op);