backward.cc 6.2 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/framework/backward.h"
D
dongzhihong 已提交
16
#include <list>
17
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
18
#include "paddle/operators/net_op.h"
Y
Yu Yang 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace framework {

static bool AllInSet(const std::vector<std::string>& names,
                     const std::string& suffix,
                     const std::unordered_set<std::string>& set) {
  for (auto& name : names) {
    if (set.find(name + suffix) == set.end()) {
      return false;
    }
  }
  return true;
}

Y
Yu Yang 已提交
34
static std::shared_ptr<OperatorBase> NOP() {
Y
Yan Chunwei 已提交
35
  auto net_op = std::make_shared<operators::NetOp>();
Y
Yu Yang 已提交
36
  net_op->type_ = "@NOP@";
Y
Yu Yang 已提交
37 38 39 40
  net_op->CompleteAddOp();
  return net_op;
}

Y
Yu Yang 已提交
41 42 43 44
//  Get backward operator from a forward operator, recursively implementation.
//
//  no_grad_names the gradient variable names without gradient calculating.
//
45 46 47
//  uniq_id is a unique index used inside recursively calling
//  BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
//  pass `uniq_id` through recursive calling.
Y
Yu Yang 已提交
48 49 50 51 52 53 54 55 56
//
//  returns The backward operator. For simple situation, it is a simple
//  operator. For complex situation, it is a NetOp.
//
//  See Backward.h for details
static std::shared_ptr<OperatorBase> BackwardRecursive(
    const OperatorBase& forwardOp,
    std::unordered_set<std::string>& no_grad_names, size_t& uniq_id);
std::shared_ptr<OperatorBase> BackwardRecursive(
Y
Yu Yang 已提交
57 58
    const OperatorBase& forwardOp,
    std::unordered_set<std::string>& no_grad_names, size_t& uniq_id) {
Y
Yu Yang 已提交
59 60 61
  //  If all input gradients of forwarding operator do not need to calculate,
  //  just return an NOP. Not return null ptr because NOP does not take
  //  too much time for calculation, but it is useful for simplifying logic.
Y
Yi Wang 已提交
62
  if (AllInSet(forwardOp.inputs_, kGradVarSuffix, no_grad_names)) {
Y
Yu Yang 已提交
63
    return NOP();
Y
Yu Yang 已提交
64 65
  }

66 67
  //  All output gradients of forwarding operator do not need to calculate.
  //  Then all input gradients cannot be computed at all, and we put them into
Y
Yu Yang 已提交
68
  //  `no_grad_names` set. Return an NOP.
Y
Yi Wang 已提交
69
  if (AllInSet(forwardOp.outputs_, kGradVarSuffix, no_grad_names)) {
Y
Yu Yang 已提交
70
    for (auto& name : forwardOp.inputs_) {
Y
Yu Yang 已提交
71
      // Mark all input is not need
72
      no_grad_names.insert(name + kGradVarSuffix);
Y
Yu Yang 已提交
73
    }
Y
Yu Yang 已提交
74
    return NOP();
Y
Yu Yang 已提交
75 76
  }

Y
Yu Yang 已提交
77
  // Returned gradient network
Y
Yan Chunwei 已提交
78
  auto net = std::make_shared<operators::NetOp>();
Y
Yu Yang 已提交
79 80

  if (forwardOp.IsNetOp()) {
Y
Yu Yang 已提交
81
    // Because forwardOp is a net op, it can static_cast.
Y
Yan Chunwei 已提交
82
    auto& forwardNet = static_cast<const operators::NetOp&>(forwardOp);
Y
Yu Yang 已提交
83

84 85
    // Map from output gradient variable name to operator's indices in
    // backward net. That operator generates that variable.
Y
Yu Yang 已提交
86 87 88
    std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;

    size_t local_op_id = 0;
Y
Yu Yang 已提交
89
    // reversely travel forwardNet
Y
Yu Yang 已提交
90
    for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
Y
Yu Yang 已提交
91
         ++it, ++local_op_id) {
D
dongzhihong 已提交
92
      auto fwd = *it;
Y
Yu Yang 已提交
93
      auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id);
D
dongzhihong 已提交
94
      net->AddOp(bwd);
Y
Yu Yang 已提交
95 96
      for (auto& out : bwd->outputs_) {
        dup_output_ops[out].emplace_back(local_op_id);
D
dongzhihong 已提交
97 98
      }
    }
Y
Yu Yang 已提交
99
    // Get unique ID for this method.
D
dongzhihong 已提交
100
    auto uid = uniq_id++;
D
dongzhihong 已提交
101
    // TODO(dzh): more comment
Y
Yu Yang 已提交
102 103
    using Pos = std::pair<size_t, std::shared_ptr<OperatorBase>>;
    std::list<Pos> insert_position;
D
dongzhihong 已提交
104
    for (auto& dup_output_op : dup_output_ops) {
D
dongzhihong 已提交
105
      const std::string& name = dup_output_op.first;
D
dongzhihong 已提交
106 107 108 109 110 111
      auto& dup_op = dup_output_op.second;
      if (dup_op.size() == 1) continue;
      std::vector<std::string> dup_outputs;

      for (size_t i = 0; i < dup_op.size(); ++i) {
        auto op_offset = dup_op[i];
D
dongzhihong 已提交
112 113 114
        dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" +
                              std::to_string(i));
        net->ops_[op_offset]->Rename(name, dup_outputs.back());
D
dongzhihong 已提交
115
      }
Y
Yu Yang 已提交
116
      insert_position.push_back(
D
dongzhihong 已提交
117 118
          {dup_op.back(),
           OpRegistry::CreateOp(
Y
Yu Yang 已提交
119
               "add", {dup_outputs}, {name},
D
dongzhihong 已提交
120
               {{"input_format",
Y
Yu Yang 已提交
121
                 std::vector<int>{0, static_cast<int>(dup_outputs.size())}}})});
D
dongzhihong 已提交
122
    }
Y
Yu Yang 已提交
123 124

    insert_position.sort(
D
dongzhihong 已提交
125
        [](const Pos& l, const Pos& r) { return l.first > r.first; });
Y
Yu Yang 已提交
126 127

    for (auto& pos : insert_position) {
Y
Yu Yang 已提交
128
      net->InsertOp(pos.first + 1, pos.second);
D
dongzhihong 已提交
129 130
    }

Y
Yu Yang 已提交
131
  } else {
132 133 134
    std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp);
    for (std::string& grad_input : grad_op->inputs_) {
      if (no_grad_names.count(grad_input)) {
Y
Yi Wang 已提交
135 136
        std::string prefix =
            grad_input.substr(0, grad_input.size() - kGradVarSuffix.size());
137
        grad_input = prefix + kZeroVarSuffix;
Y
Yu Yang 已提交
138 139 140

        // If part of input gradient of that operator is not calculated, fill
        // zero variables to that input gradient.
F
fengjiayi 已提交
141 142
        net->AddOp(OpRegistry::CreateOp("fill_zeros_like", {prefix},
                                        {grad_input}, {}));
143 144
      }
    }
Y
Yu Yang 已提交
145

F
fengjiayi 已提交
146
    for (std::string& grad_output : grad_op->outputs_) {
147
      if (no_grad_names.count(grad_output)) {
148
        grad_output = kEmptyVarName;
149 150
      }
    }
Y
Yu Yang 已提交
151 152 153 154

    if (net->ops_.empty()) {  // Current no aux op is added to network
      return grad_op;
    }
F
fengjiayi 已提交
155
    net->AddOp(grad_op);
Y
Yu Yang 已提交
156
  }
Y
Yu Yang 已提交
157
  net->type_ = "@GENERATED_BACKWARD@";
Y
Yu Yang 已提交
158
  net->CompleteAddOp();
Y
Yu Yang 已提交
159
  return net;
Y
Yu Yang 已提交
160 161
}

Y
Yu Yang 已提交
162 163
// See header for comments
std::shared_ptr<OperatorBase> Backward(
Y
Yu Yang 已提交
164
    const OperatorBase& forwardOp,
Y
Yu Yang 已提交
165 166 167 168
    const std::unordered_set<std::string>& no_grad_vars) {
  std::unordered_set<std::string> no_grad_names;
  no_grad_names.reserve(no_grad_vars.size());

Y
Yi Wang 已提交
169
  no_grad_names.insert(kEmptyVarName + kGradVarSuffix);
170

Y
Yu Yang 已提交
171
  for (auto& name : no_grad_vars) {
172
    no_grad_names.insert(name + kGradVarSuffix);
Y
Yu Yang 已提交
173
  }
Y
Yu Yang 已提交
174
  size_t uid = 0;
Y
Yu Yang 已提交
175
  return BackwardRecursive(forwardOp, no_grad_names, uid);
Y
Yu Yang 已提交
176
}
Y
Yi Wang 已提交
177

Y
Yu Yang 已提交
178 179
}  // namespace framework
}  // namespace paddle