space_to_depth_op.cc 6.2 KB
Newer Older
J
JiabinYang 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
J
JiabinYang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

J
JiabinYang 已提交
15
#include "paddle/fluid/operators/space_to_depth_op.h"
J
JiabinYang 已提交
16 17 18 19 20 21
#include <string>
#include <vector>

namespace paddle {
namespace operators {

J
JiabinYang 已提交
22
class SpaceToDepthOp : public framework::OperatorWithKernel {
J
JiabinYang 已提交
23 24 25 26 27
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
J
JiabinYang 已提交
28
                   "Input(X) of SpaceToDepthOp should not be null.");
J
JiabinYang 已提交
29
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
J
JiabinYang 已提交
30
                   "Output(Out) of SpaceToDepthOp should not be null.");
J
JiabinYang 已提交
31 32 33

    auto x_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE_EQ(x_dims.size(), 4, "input should be a 4D tensor");
J
JiabinYang 已提交
34
    auto blocksize = ctx->Attrs().Get<int64_t>("blocksize");
J
JiabinYang 已提交
35

J
JiabinYang 已提交
36
    PADDLE_ENFORCE_GT(blocksize, 1, "The blocksize should be Greater than 1");
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_GT(x_dims[1], 0, "input channel should be Greater than 0");
      PADDLE_ENFORCE_GT(x_dims[2], 0, "input Height should be Greater than 0");
      PADDLE_ENFORCE_GT(x_dims[3], 0, "input Width should be Greater than 0");

      PADDLE_ENFORCE_EQ(x_dims[1] % (blocksize * blocksize), 0,
                        "input channel should be divisible of the square of "
                        "SpaceToDepthOp blocksize");
      PADDLE_ENFORCE_EQ(x_dims[2] % (blocksize), 0,
                        "input Height should be divisible of the square of "
                        "SpaceToDepthOp blocksize");
      PADDLE_ENFORCE_EQ(x_dims[3] % (blocksize), 0,
                        "input Width should be divisible of the square of "
                        "SpaceToDepthOp blocksize");
    } else {
      if (x_dims[1] != -1) {
        PADDLE_ENFORCE_GT(x_dims[1], 0,
                          "input channel should be Greater than 0");
        PADDLE_ENFORCE_EQ(x_dims[1] % (blocksize * blocksize), 0,
                          "input channel should be divisible of the square of "
                          "SpaceToDepthOp blocksize");
      }
      if (x_dims[2] != -1) {
        PADDLE_ENFORCE_GT(x_dims[2], 0,
                          "input Height should be Greater than 0");
        PADDLE_ENFORCE_EQ(x_dims[2] % (blocksize), 0,
                          "input Height should be divisible of the square of "
                          "SpaceToDepthOp blocksize");
      }

      if (x_dims[3] != -1) {
        PADDLE_ENFORCE_GT(x_dims[3], 0, "input Width should be Greater than 0");

        PADDLE_ENFORCE_EQ(x_dims[3] % (blocksize), 0,
                          "input Width should be divisible of the square of "
                          "SpaceToDepthOp blocksize");
      }
    }
J
JiabinYang 已提交
75

J
JiabinYang 已提交
76
    VLOG(3) << "SpaceToDepthOp operator x.shape=" << x_dims
J
JiabinYang 已提交
77
            << "Attribute blocksize" << blocksize << std::endl;
J
JiabinYang 已提交
78 79 80

    std::vector<int64_t> output_shape(4, 0);  // [B,C,H,W]
    output_shape[0] = x_dims[0];
J
JiabinYang 已提交
81 82 83
    output_shape[1] = x_dims[1] * blocksize * blocksize;
    output_shape[2] = x_dims[2] / blocksize;
    output_shape[3] = x_dims[3] / blocksize;
J
JiabinYang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96

    auto out_dims = framework::make_ddim(output_shape);

    ctx->SetOutputDim("Out", out_dims);

    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }
};

J
JiabinYang 已提交
97
class SpaceToDepthOpMaker : public framework::OpProtoAndCheckerMaker {
J
JiabinYang 已提交
98 99 100
 public:
  void Make() override {
    AddInput("X",
J
JiabinYang 已提交
101 102
             "(Tensor). The input should be a 4D tensor B * C * W * H of "
             "SpaceToDepthOp "
J
JiabinYang 已提交
103 104 105
             "operator.");
    AddOutput("Out",
              "(Tensor), The output should be a 4D tensor B * C2 * W2 * H2 of "
J
JiabinYang 已提交
106 107
              "SpaceToDepthOp operator.");
    AddAttr<int64_t>(
J
JiabinYang 已提交
108 109
        "blocksize",
        "(int64_t, default 2) blocksize used to do change Space To Depth.")
J
JiabinYang 已提交
110 111
        .SetDefault(2)
        .GreaterThan(1);
J
JiabinYang 已提交
112 113
    AddComment(R"DOC(
        reorg operator used in Yolo v2.
W
wopeizl 已提交
114
        The equation is: C2 = C1/blocksize * blocksize, W2 = W1 * blocksize + offset % blocksize, H2 = H1 * blocksize + offset / blocksize,
J
JiabinYang 已提交
115

J
JiabinYang 已提交
116
        Reshape Input(X) into the shape according to Attr(blocksize). The
J
JiabinYang 已提交
117 118 119 120
        data in Input(X) are unchanged.

        Examples:

J
JiabinYang 已提交
121
            1. Given a 4-D tensor Input(X) with a shape [128, 2048, 26, 26], and the blocksize is 2, the reorg operator will transform Input(X)
J
JiabinYang 已提交
122
            into a 4-D tensor with shape [128, 2048, 13, 13] and leaving Input(X)'s data unchanged.
J
JiabinYang 已提交
123 124 125 126 127

    )DOC");
  }
};

J
JiabinYang 已提交
128
class SpaceToDepthGradOp : public framework::OperatorWithKernel {
J
JiabinYang 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

J
JiabinYang 已提交
144
REGISTER_OPERATOR(space_to_depth, ops::SpaceToDepthOp, ops::SpaceToDepthOpMaker,
J
JiabinYang 已提交
145
                  paddle::framework::DefaultGradOpDescMaker<true>);
J
JiabinYang 已提交
146
REGISTER_OPERATOR(space_to_depth_grad, ops::SpaceToDepthGradOp);
J
JiabinYang 已提交
147
REGISTER_OP_CPU_KERNEL(
J
JiabinYang 已提交
148 149 150 151
    space_to_depth,
    ops::SpaceToDepthKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SpaceToDepthKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SpaceToDepthKernel<paddle::platform::CPUDeviceContext, int64_t>);
J
JiabinYang 已提交
152
REGISTER_OP_CPU_KERNEL(
J
JiabinYang 已提交
153 154 155 156
    space_to_depth_grad,
    ops::SpaceToDepthGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SpaceToDepthGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SpaceToDepthGradKernel<paddle::platform::CPUDeviceContext, int64_t>);