modified_huber_loss_op.cc 4.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/modified_huber_loss_op.h"
16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class ModifiedHuberLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
25 26
    PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized.");
27

Q
Qiao Longfei 已提交
28 29
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
30

Q
Qiao Longfei 已提交
31
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, "The tensor rank of X must be 2.");
32 33 34 35 36 37 38 39 40
    if (ctx->IsRuntime() ||
        (framework::product(x_dims) > 0 && framework::product(y_dims) > 0)) {
      PADDLE_ENFORCE_EQ(x_dims, y_dims,
                        "The shape of X and Y must be the same.");
    }

    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(x_dims[1], 1, "The 2nd dimension of X must be 1.");
    }
41

Q
Qiao Longfei 已提交
42 43
    ctx->SetOutputDim("IntermediateVal", x_dims);
    ctx->SetOutputDim("Out", {x_dims[0], 1});
44 45 46 47 48
  }
};

class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
49
  void Make() override {
50
    AddInput("X",
K
kexinzhao 已提交
51
             "The input tensor of modified huber loss op. "
52 53
             "X is 2-D tensor with shape [batch_size, 1].");
    AddInput("Y",
K
kexinzhao 已提交
54 55
             "The target labels of modified huber loss op. "
             "The shape of Y is the same as X. Values of Y must be 0 or 1.");
56
    AddOutput("IntermediateVal",
Y
yangyaming 已提交
57 58 59
              "Variable to save intermediate result which will be reused in "
              "backward processing.")
        .AsIntermediate();
60
    AddOutput("Out", "Classification loss for X.");
Y
yangyaming 已提交
61
    AddComment(R"DOC(
K
kexinzhao 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
Modified Huber Loss Operator.

This operator is used in binary classification problem. The shape of
input X and target Y are both [N, 1] and so is the shape of the output loss.
Since target Y is not differentiable, calculating gradient for Y is illegal.
The formula of modified huber loss is:

$$
L(y, f(x)) = 
\begin{cases}
(\max(0, 1 - yf(x)))^2,  \text{if} \  yf(x) >= -1    \\
             -4yf(x),    \quad \text{otherwise}
\end{cases}
$$

Make sure the values of target label Y are in {0, 1} here. This operator will
78
scale values of Y to {-1, +1} when computing losses and gradients.
K
kexinzhao 已提交
79

Y
yangyaming 已提交
80
)DOC");
81 82 83 84 85 86 87
  }
};

class ModifiedHuberLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

88
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
89 90 91 92 93 94 95 96 97 98
    PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("IntermediateVal"),
                   "Intermediate value must not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@Grad) must not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto intermediate_dims = ctx->GetInputDim("IntermediateVal");
    auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out"));
99

100 101 102 103 104 105 106
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(
          intermediate_dims, x_dims,
          "The shape of X and intermediate value must be the same.");
      PADDLE_ENFORCE_EQ(out_grad_dims, x_dims,
                        "The shape of Input(Out@Grad) and X must be the same.");
    }
107

Q
Qiao Longfei 已提交
108 109 110
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
111 112 113 114 115 116 117
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
118 119
REGISTER_OPERATOR(modified_huber_loss, ops::ModifiedHuberLossOp,
                  ops::ModifiedHuberLossOpMaker,
120 121
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(modified_huber_loss_grad, ops::ModifiedHuberLossGradOp);
122 123 124

REGISTER_OP_CPU_KERNEL(
    modified_huber_loss,
Q
QI JUN 已提交
125
    ops::ModifiedHuberLossKernel<paddle::platform::CPUDeviceContext, float>);
126 127
REGISTER_OP_CPU_KERNEL(modified_huber_loss_grad,
                       ops::ModifiedHuberLossGradCPUKernel<float>);