test_lookup_table_op.py 5.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest
import numpy as np
17
from op_test import OpTest
C
chengduoZH 已提交
18 19
import paddle.fluid.core as core
from paddle.fluid.op import Operator
M
minqiyang 已提交
20
import paddle.fluid.compat as cpt
21 22


Q
qijun 已提交
23
class TestLookupTableOp(OpTest):
24
    def setUp(self):
Q
qijun 已提交
25 26
        self.op_type = "lookup_table"
        table = np.random.random((17, 31)).astype("float32")
27
        ids = np.random.randint(0, 17, 4).astype("int64")
28 29
        ids_expand = np.expand_dims(ids, axis=1)
        self.inputs = {'W': table, 'Ids': ids_expand}
30 31
        self.outputs = {'Out': table[ids]}

Q
qijun 已提交
32 33
    def test_check_output(self):
        self.check_output()
34

Q
qijun 已提交
35 36
    def test_check_grad(self):
        self.check_grad(['W'], 'Out', no_grad_set=set('Ids'))
37 38


F
fengjiayi 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
class TestLookupTableOpWithTensorIds(OpTest):
    def setUp(self):
        self.op_type = "lookup_table"
        table = np.random.random((17, 31)).astype("float32")
        ids = np.random.randint(
            low=0, high=17, size=(2, 4, 5, 1)).astype("int64")
        self.inputs = {'W': table, 'Ids': ids}
        self.outputs = {'Out': table[ids.flatten()].reshape((2, 4, 5, 31))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['W'], 'Out', no_grad_set=set('Ids'))


55 56 57 58 59
class TestLookupTableOpWithPadding(TestLookupTableOp):
    def test_check_output(self):
        ids = np.squeeze(self.inputs['Ids'])
        padding_idx = np.random.choice(ids, 1)[0]
        self.outputs['Out'][ids == padding_idx] = np.zeros(31)
60
        self.attrs = {'padding_idx': int(padding_idx)}
61 62 63
        self.check_output()

    def test_check_grad(self):
F
fengjiayi 已提交
64
        # Since paddings are not trainable and fixed in forward, the gradient of
65 66 67 68
        # paddings makes no sense and we don't test the gradient here.
        pass


F
fengjiayi 已提交
69 70 71 72 73 74
class TestLookupTableOpWithTensorIdsAndPadding(TestLookupTableOpWithTensorIds):
    def test_check_output(self):
        ids = self.inputs['Ids']
        flatten_idx = ids.flatten()
        padding_idx = np.random.choice(flatten_idx, 1)[0]
        self.outputs['Out'][np.squeeze(ids == padding_idx)] = np.zeros(31)
M
minqiyang 已提交
75
        self.attrs = {'padding_idx': cpt.long_type(padding_idx)}
F
fengjiayi 已提交
76 77 78 79 80 81
        self.check_output()

    def test_check_grad(self):
        # Since paddings are not trainable and fixed in forward, the gradient of
        # paddings makes no sense and we don't test the gradient here.
        pass
Q
qiaolongfei 已提交
82 83


F
fengjiayi 已提交
84 85
class TestLookupTableWIsSelectedRows(OpTest):
    def prepare_ids(self, scope, place):
Q
qiaolongfei 已提交
86 87 88
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.array([[0], [4], [3], [5]]).astype("int64")
        ids_tensor.set(ids_array, place)
F
fengjiayi 已提交
89
        return ids_array
Q
qiaolongfei 已提交
90

F
fengjiayi 已提交
91
    def prepare_w(self, scope, place):
Q
qiaolongfei 已提交
92 93 94 95 96 97 98 99 100
        rows = [0, 1, 2, 3, 4, 5, 6]
        row_numel = 12

        w_selected_rows = scope.var('W').get_selected_rows()
        w_selected_rows.set_height(len(rows))
        w_selected_rows.set_rows(rows)
        w_array = np.ones((len(rows), row_numel)).astype("float32")
        for i in range(len(rows)):
            w_array[i] *= i
Q
qiaolongfei 已提交
101 102
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)
Q
qiaolongfei 已提交
103

F
fengjiayi 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    def create_out_tensor(self, scope, place):
        return scope.var('Out').get_tensor()

    def check_result(self, ids_array, result_array):
        # all(): return True if all elements of the iterable are true (or if the iterable is empty)
        for idx, row in enumerate(ids_array):
            assert (row[0] == result_array[idx]).all()

    def check_with_place(self, place):
        scope = core.Scope()

        ids_array = self.prepare_ids(scope, place)

        self.prepare_w(scope, place)

        out_tensor = self.create_out_tensor(scope, place)
Q
qiaolongfei 已提交
120 121 122 123 124 125

        # create and run lookup_table operator
        lookup_table = Operator("lookup_table", W='W', Ids='Ids', Out='Out')
        lookup_table.run(scope, place)

        # get result from Out
Q
qiaolongfei 已提交
126
        result_array = np.array(out_tensor)
F
fengjiayi 已提交
127 128

        self.check_result(ids_array, result_array)
Q
qiaolongfei 已提交
129 130 131 132 133 134 135 136

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
        # currently only support CPU
        for place in places:
            self.check_with_place(place)


F
fengjiayi 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150
class TestLookupTableWithTensorIdsWIsSelectedRows(
        TestLookupTableWIsSelectedRows):
    def prepare_ids(self, scope, place):
        ids_tensor = scope.var('Ids').get_tensor()
        ids_array = np.random.randint(
            low=0, high=6, size=(2, 4, 3, 1)).astype("int64")
        ids_tensor.set(ids_array, place)
        return ids_array

    def check_result(self, ids_array, result_array):
        for idx, row in np.ndenumerate(ids_array):
            assert (row == result_array[idx]).all()


Q
qijun 已提交
151
if __name__ == "__main__":
152
    unittest.main()