pool_cudnn_op.cu 5.9 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_cudnn_op.h"
#include "paddle/platform/cudnn_helper.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor;
using DataLayout = platform::DataLayout;
using PoolingMode = platform::PoolingMode;

template <typename T>
class PoolCudnnOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "It must use GPUPlace.");

    const Tensor *input = ctx.Input<Tensor>("X");
    Tensor *output = ctx.Output<Tensor>("Out");

    const T *input_data = input->data<T>();
    T *output_data = output->mutable_data<T>(ctx.GetPlace());

C
chengduoZH 已提交
40
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
C
chengduoZH 已提交
41 42 43
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
44
    if (ctx.Attr<bool>("global_pooling")) {
C
chengduoZH 已提交
45
      for (size_t i = 0; i < ksize.size(); ++i) {
C
fix bug  
chengduoZH 已提交
46
        paddings[i] = 0;
C
chengduoZH 已提交
47 48 49 50 51 52 53 54 55 56
        ksize[i] = static_cast<int>(input->dims()[i + 2]);
      }
    }

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedPoolingDescriptor pool_desc;
    DataLayout layout = DataLayout::kNCHW;

C
chengduoZH 已提交
57 58 59 60
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()));
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()));
C
chengduoZH 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

    PoolingMode pooling_mode;
    if (pooling_type == "max") {
      pooling_mode = PoolingMode::kMaximum;
    } else {
      pooling_mode = PoolingMode::kAverage;
    }

    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, ksize, paddings, strides);

    // ------------------- cudnn pool algorithm ---------------------
    auto handle = ctx.cuda_device_context().cudnn_handle();
    T alpha = 1.0f, beta = 0.0f;

    PADDLE_ENFORCE(platform::dynload::cudnnPoolingForward(
        handle, cudnn_pool_desc, &alpha, cudnn_input_desc, input_data, &beta,
        cudnn_output_desc, output_data));
  }
};

template <typename T>
class PoolCudnnGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "It must use GPUPlace.");

    const Tensor *input = ctx.Input<Tensor>("X");
    const Tensor *output = ctx.Input<Tensor>("Out");
    const Tensor *output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor *input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

C
chengduoZH 已提交
95
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
C
chengduoZH 已提交
96 97 98 99
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

C
chengduoZH 已提交
100
    if (ctx.Attr<bool>("global_pooling")) {
C
fix bug  
chengduoZH 已提交
101 102
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
C
chengduoZH 已提交
103
        ksize[i] = static_cast<int>(input->dims()[i + 2]);
C
fix bug  
chengduoZH 已提交
104
      }
C
chengduoZH 已提交
105 106 107 108 109 110 111 112 113 114 115 116
    }

    const T *input_data = input->data<T>();
    const T *output_data = output->data<T>();
    const T *output_grad_data = output_grad->data<T>();

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedPoolingDescriptor pool_desc;
    DataLayout layout = DataLayout::kNCHW;

C
chengduoZH 已提交
117 118 119 120
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()));
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()));
C
chengduoZH 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

    PoolingMode pooling_mode;
    if (pooling_type == "max") {
      pooling_mode = PoolingMode::kMaximum;
    } else {
      pooling_mode = PoolingMode::kAverage;
    }

    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, ksize, paddings, strides);

    // ------------------- cudnn pool algorithm ---------------------
    auto handle = ctx.cuda_device_context().cudnn_handle();
    T alpha = 1.0f, beta = 0.0f;

    if (input_grad) {
      T *input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
138 139
      math::SetConstant<paddle::platform::GPUPlace, T> set_zero;
      set_zero(ctx.device_context(), input_grad, static_cast<T>(0));
C
chengduoZH 已提交
140 141 142

      PADDLE_ENFORCE(platform::dynload::cudnnPoolingBackward(
          handle, cudnn_pool_desc, &alpha, cudnn_output_desc, output_data,
143 144
          cudnn_output_desc, output_grad_data, cudnn_input_desc, input_data,
          &beta, cudnn_input_desc, input_grad_data));
C
chengduoZH 已提交
145 146 147 148 149 150 151 152 153 154 155
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_GPU_KERNEL(pool2d_cudnn, ops::PoolCudnnOpKernel<float>);
REGISTER_OP_GPU_KERNEL(pool2d_cudnn_grad, ops::PoolCudnnGradOpKernel<float>);
C
chengduoZH 已提交
156 157 158

REGISTER_OP_GPU_KERNEL(pool3d_cudnn, ops::PoolCudnnOpKernel<float>);
REGISTER_OP_GPU_KERNEL(pool3d_cudnn_grad, ops::PoolCudnnGradOpKernel<float>);