ttf_fpn.py 5.0 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Constant, Uniform, Normal
from paddle import ParamAttr
from ppdet.core.workspace import register, serializable
from paddle.regularizer import L2Decay
from ppdet.modeling.layers import DeformableConvV2
import math
from ppdet.modeling.ops import batch_norm
26 27 28
from ..shape_spec import ShapeSpec

__all__ = ['TTFFPN']
F
Feng Ni 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62


class Upsample(nn.Layer):
    def __init__(self, ch_in, ch_out, name=None):
        super(Upsample, self).__init__()
        fan_in = ch_in * 3 * 3
        stdv = 1. / math.sqrt(fan_in)
        self.dcn = DeformableConvV2(
            ch_in,
            ch_out,
            kernel_size=3,
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
            bias_attr=ParamAttr(
                initializer=Constant(0),
                regularizer=L2Decay(0.),
                learning_rate=2.),
            lr_scale=2.,
            regularizer=L2Decay(0.),
            name=name)

        self.bn = batch_norm(
            ch_out, norm_type='bn', initializer=Constant(1.), name=name)

    def forward(self, feat):
        dcn = self.dcn(feat)
        bn = self.bn(dcn)
        relu = F.relu(bn)
        out = F.interpolate(relu, scale_factor=2., mode='bilinear')
        return out


class ShortCut(nn.Layer):
    def __init__(self, layer_num, ch_out, name=None):
        super(ShortCut, self).__init__()
F
Feng Ni 已提交
63
        shortcut_conv = nn.Sequential()
F
Feng Ni 已提交
64 65 66 67 68 69 70 71
        ch_in = ch_out * 2
        for i in range(layer_num):
            fan_out = 3 * 3 * ch_out
            std = math.sqrt(2. / fan_out)
            in_channels = ch_in if i == 0 else ch_out
            shortcut_name = name + '.conv.{}'.format(i)
            shortcut_conv.add_sublayer(
                shortcut_name,
F
Feng Ni 已提交
72
                nn.Conv2D(
F
Feng Ni 已提交
73 74 75 76 77 78 79 80
                    in_channels=in_channels,
                    out_channels=ch_out,
                    kernel_size=3,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0, std)),
                    bias_attr=ParamAttr(
                        learning_rate=2., regularizer=L2Decay(0.))))
            if i < layer_num - 1:
F
Feng Ni 已提交
81
                shortcut_conv.add_sublayer(shortcut_name + '.act', nn.ReLU())
F
Feng Ni 已提交
82 83 84 85 86 87 88 89 90 91
        self.shortcut = self.add_sublayer('short', shortcut_conv)

    def forward(self, feat):
        out = self.shortcut(feat)
        return out


@register
@serializable
class TTFFPN(nn.Layer):
92 93 94 95 96 97 98 99 100 101
    """
    Args:
        in_channels (list): number of input feature channels from backbone.
            [128,256,512,1024] by default, means the channels of DarkNet53
            backbone return_idx [1,2,3,4].
        shortcut_num (list): the number of convolution layers in each shortcut.
            [3,2,1] by default, means DarkNet53 backbone return_idx_1 has 3 convs
            in its shortcut, return_idx_2 has 2 convs and return_idx_3 has 1 conv.
    """

F
Feng Ni 已提交
102
    def __init__(self,
103 104
                 in_channels=[128, 256, 512, 1024],
                 shortcut_num=[3, 2, 1]):
F
Feng Ni 已提交
105
        super(TTFFPN, self).__init__()
106 107
        self.planes = [c // 2 for c in in_channels[:-1]][::-1]
        self.shortcut_num = shortcut_num[::-1]
F
Feng Ni 已提交
108
        self.shortcut_len = len(shortcut_num)
109 110
        self.ch_in = in_channels[::-1]

F
Feng Ni 已提交
111 112 113
        self.upsample_list = []
        self.shortcut_list = []
        for i, out_c in enumerate(self.planes):
114
            in_c = self.ch_in[i] if i == 0 else self.ch_in[i] // 2
F
Feng Ni 已提交
115 116 117
            upsample = self.add_sublayer(
                'upsample.' + str(i),
                Upsample(
118
                    in_c, out_c, name='upsample.' + str(i)))
F
Feng Ni 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
            self.upsample_list.append(upsample)
            if i < self.shortcut_len:
                shortcut = self.add_sublayer(
                    'shortcut.' + str(i),
                    ShortCut(
                        self.shortcut_num[i], out_c, name='shortcut.' + str(i)))
                self.shortcut_list.append(shortcut)

    def forward(self, inputs):
        feat = inputs[-1]
        for i, out_c in enumerate(self.planes):
            feat = self.upsample_list[i](feat)
            if i < self.shortcut_len:
                shortcut = self.shortcut_list[i](inputs[-i - 2])
                feat = feat + shortcut
        return feat
135 136 137 138 139 140 141 142

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=self.planes[-1], )]