math_function_test.cc 10.8 KB
Newer Older
Q
qijun 已提交
1
#include "paddle/operators/math/math_function.h"
Q
qijun 已提交
2
#include "glog/logging.h"
Q
qijun 已提交
3 4
#include "gtest/gtest.h"

5
#ifdef PADDLE_WITH_CUDA
Q
qijun 已提交
6
TEST(math_function, notrans_mul_trans) {
Q
qijun 已提交
7 8 9 10 11 12 13
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor out_gpu;
  paddle::framework::Tensor out;

  auto* cpu_place = new paddle::platform::CPUPlace();
Q
qijun 已提交
14 15 16
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));
Q
qijun 已提交
17 18

  auto* gpu_place = new paddle::platform::GPUPlace(0);
19
  paddle::platform::CUDADeviceContext context(*gpu_place);
Q
qijun 已提交
20

21 22
  input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
  input2_gpu.CopyFrom<float>(input1, *gpu_place, context);
Q
qijun 已提交
23 24 25 26

  out_gpu.mutable_data<float>({2, 2}, *gpu_place);

  paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
27
      context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0);
Q
qijun 已提交
28

29
  out.CopyFrom<float>(out_gpu, *cpu_place, context);
Q
qijun 已提交
30 31

  float* out_ptr = out.data<float>();
32
  context.Wait();
Q
qijun 已提交
33 34 35 36
  EXPECT_EQ(out_ptr[0], 5);
  EXPECT_EQ(out_ptr[1], 14);
  EXPECT_EQ(out_ptr[2], 14);
  EXPECT_EQ(out_ptr[3], 50);
37
  delete gpu_place;
Q
qijun 已提交
38 39
}

Q
qijun 已提交
40
TEST(math_function, trans_mul_notrans) {
Q
qijun 已提交
41 42 43 44 45 46 47 48 49 50 51 52
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor out_gpu;
  paddle::framework::Tensor out;

  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));

  auto* gpu_place = new paddle::platform::GPUPlace(0);
53
  paddle::platform::CUDADeviceContext context(*gpu_place);
Q
qijun 已提交
54

55 56
  input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
  input2_gpu.CopyFrom<float>(input1, *gpu_place, context);
Q
qijun 已提交
57 58

  out_gpu.mutable_data<float>({3, 3}, *gpu_place);
Q
qijun 已提交
59

Q
qijun 已提交
60
  paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
61
      context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0);
Q
qijun 已提交
62

63
  out.CopyFrom<float>(out_gpu, *cpu_place, context);
Q
qijun 已提交
64 65

  float* out_ptr = out.data<float>();
66
  context.Wait();
Q
qijun 已提交
67 68 69 70 71 72 73 74 75
  EXPECT_EQ(out_ptr[0], 9);
  EXPECT_EQ(out_ptr[1], 12);
  EXPECT_EQ(out_ptr[2], 15);
  EXPECT_EQ(out_ptr[3], 12);
  EXPECT_EQ(out_ptr[4], 17);
  EXPECT_EQ(out_ptr[5], 22);
  EXPECT_EQ(out_ptr[6], 15);
  EXPECT_EQ(out_ptr[7], 22);
  EXPECT_EQ(out_ptr[8], 29);
76
  delete gpu_place;
Q
qijun 已提交
77
}
G
guosheng 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

TEST(math_function, gemm_notrans_cublas) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor input3_gpu;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({3, 4}, *cpu_place);
  float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

  auto* gpu_place = new paddle::platform::GPUPlace(0);
  paddle::platform::CUDADeviceContext context(*gpu_place);

104 105 106
  input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
  input2_gpu.CopyFrom<float>(input2, *gpu_place, context);
  input3_gpu.CopyFrom<float>(input3, *gpu_place, context);
G
guosheng 已提交
107 108 109 110 111 112 113
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
  float* c = input3_gpu.mutable_data<float>(*gpu_place);

  paddle::operators::math::gemm<paddle::platform::GPUPlace, float>(
      context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4);

114
  input3.CopyFrom<float>(input3_gpu, *cpu_place, context);
G
guosheng 已提交
115 116 117 118 119 120 121

  // numpy code:
  // a = np.arange(6).reshape(2, 3)
  // b = np.arange(12).reshape(3, 4)[:, 1:]
  // c = np.arange(8).reshape(2, 4)[:, 1:]
  // out = np.arange(8).reshape(2, 4)
  // out[:, 1:] = np.dot(a, b) + c
122
  context.Wait();
G
guosheng 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
  delete gpu_place;
}

TEST(math_function, gemm_trans_cublas) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;
  paddle::framework::Tensor input1_gpu;
  paddle::framework::Tensor input2_gpu;
  paddle::framework::Tensor input3_gpu;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({4, 3}, *cpu_place);
  float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

  auto* gpu_place = new paddle::platform::GPUPlace(0);
  paddle::platform::CUDADeviceContext context(*gpu_place);

159 160 161
  input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
  input2_gpu.CopyFrom<float>(input2, *gpu_place, context);
  input3_gpu.CopyFrom<float>(input3, *gpu_place, context);
G
guosheng 已提交
162 163 164 165 166 167 168
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
  float* c = input3_gpu.mutable_data<float>(*gpu_place);

  paddle::operators::math::gemm<paddle::platform::GPUPlace, float>(
      context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4);

169 170
  input3.CopyFrom<float>(input3_gpu, *cpu_place, context);
  context.Wait();
G
guosheng 已提交
171 172 173 174 175 176 177 178 179 180 181

  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
  delete gpu_place;
}
Q
qijun 已提交
182
#endif
G
guosheng 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

TEST(math_function, gemm_notrans_cblas) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({3, 4}, *cpu_place);
  float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

  paddle::platform::CPUDeviceContext context(*cpu_place);
  paddle::operators::math::gemm<paddle::platform::CPUPlace, float>(
      context, false, false, m, n, k, 1, input1_ptr, 3, input2_ptr + 1, 4, 1,
      input3_ptr + 1, 4);

  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
}

TEST(math_function, gemm_trans_clbas) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({4, 3}, *cpu_place);
  float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

  paddle::platform::CPUDeviceContext context(*cpu_place);
  paddle::operators::math::gemm<paddle::platform::CPUPlace, float>(
      context, false, true, m, n, k, 1, input1_ptr, 3, input2_ptr + 3, 3, 1,
      input3_ptr + 1, 4);

  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
}
251 252 253 254 255 256

TEST(math_function, zero) {
  paddle::framework::Tensor tensor;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* t = tensor.mutable_data<float>({2, 2}, *cpu_place);
  paddle::platform::CPUDeviceContext context(*cpu_place);
Q
qijun 已提交
257 258 259
  paddle::operators::math::SetConstant<paddle::platform::CPUPlace, float>
      functor;
  functor(context, &tensor, 0);
260 261 262 263 264
  EXPECT_EQ(t[0], 0);
  EXPECT_EQ(t[1], 0);
  EXPECT_EQ(t[2], 0);
  EXPECT_EQ(t[3], 0);

Q
qijun 已提交
265
  functor(context, &tensor, 1);
266 267 268 269 270 271

  EXPECT_EQ(t[0], 1);
  EXPECT_EQ(t[1], 1);
  EXPECT_EQ(t[2], 1);
  EXPECT_EQ(t[3], 1);
}
Q
qijun 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

TEST(math_function, selected_rows_add) {
  using namespace paddle::framework;
  using namespace paddle::platform;
  using namespace paddle::operators::math;

  CPUPlace cpu_place;
  CPUDeviceContext ctx(cpu_place);
  SetConstant<CPUPlace, float> functor;
  int64_t height = 10;
  int64_t row_numel = 10;

  std::vector<int64_t> rows1{0, 4, 7};
  std::unique_ptr<SelectedRows> selected_rows1{new SelectedRows(rows1, height)};
  auto* in1_value = selected_rows1->mutable_value();
  in1_value->mutable_data<float>(
      make_ddim({static_cast<int64_t>(rows1.size()), row_numel}), cpu_place);
  functor(ctx, in1_value, 2.0);

  std::vector<int64_t> rows2{0, 5, 7, 9};
  std::unique_ptr<SelectedRows> selected_rows2{new SelectedRows(rows2, height)};
  auto* in2_value = selected_rows2->mutable_value();
  in2_value->mutable_data<float>(
      make_ddim({static_cast<int64_t>(rows2.size()), row_numel}), cpu_place);
  functor(ctx, in2_value, 1.0);

  std::unique_ptr<SelectedRows> output{new SelectedRows()};
  output->set_height(height);
  std::vector<int64_t> out_rows = {0, 4, 5, 7, 9};
  output->set_rows(out_rows);

  auto* out_value = output->mutable_value();
  out_value->mutable_data<float>(make_ddim({5, 10}), cpu_place);

  SelectedRowsAdd<CPUPlace, float> add_functor;
  add_functor(ctx, *selected_rows1, *selected_rows2, output.get());

  auto* data = output->value().data<float>();
  // out_rows[0] = 0
  EXPECT_EQ(data[0 * row_numel + 0], 3.0);
  EXPECT_EQ(data[0 * row_numel + 8], 3.0);
  // out_rows[1] = 4
  EXPECT_EQ(data[1 * row_numel + 1], 2.0);
  // out_rows[2] = 5
  EXPECT_EQ(data[2 * row_numel + 6], 1.0);
  // out_rows[3] = 7
  EXPECT_EQ(data[3 * row_numel + 3], 3.0);
  EXPECT_EQ(data[3 * row_numel + 8], 3.0);
  // out_rows[4] = 9
  EXPECT_EQ(data[4 * row_numel + 4], 1.0);
}