object_detector.cc 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14 15 16 17
#include <sstream>
// for setprecision
#include <iomanip>
#include "include/object_detector.h"
18

19 20

using namespace paddle_infer;
21 22 23 24

namespace PaddleDetection {

// Load Model and create model predictor
25 26 27
void ObjectDetector::LoadModel(const std::string& model_dir,
                               bool use_gpu,
                               const int min_subgraph_size,
28
                               const int batch_size,
29 30 31 32 33
                               const std::string& run_mode,
                               const int gpu_id) {
  paddle_infer::Config config;
  std::string prog_file = model_dir + OS_PATH_SEP + "model.pdmodel";
  std::string params_file = model_dir + OS_PATH_SEP + "model.pdiparams";
34 35
  config.SetModel(prog_file, params_file);
  if (use_gpu) {
36 37
    config.EnableUseGpu(200, gpu_id);
    config.SwitchIrOptim(true);
38
    if (run_mode != "fluid") {
39
      auto precision = paddle_infer::Config::Precision::kFloat32;
40
      if (run_mode == "trt_fp16") {
41
        precision = paddle_infer::Config::Precision::kHalf;
42
      } else if (run_mode == "trt_int8") {
W
wangguanzhong 已提交
43 44
        printf("TensorRT int8 mode is not supported now, "
               "please use 'trt_fp32' or 'trt_fp16' instead");
45
      } else {
46
        if (run_mode != "trt_fp32") {
47 48 49 50 51 52 53 54 55
          printf("run_mode should be 'fluid', 'trt_fp32' or 'trt_fp16'");
        }
      }
      config.EnableTensorRtEngine(
          1 << 10,
          batch_size,
          min_subgraph_size,
          precision,
          false,
W
wangguanzhong 已提交
56
          false);
57
   }
58
  } else {
59
    config.DisableGpu();
60 61
  }
  config.SwitchUseFeedFetchOps(false);
62
  config.DisableGlogInfo();
63 64
  // Memory optimization
  config.EnableMemoryOptim();
65
  predictor_ = std::move(CreatePredictor(config));
66 67 68 69 70 71 72 73 74 75 76 77 78 79
}

// Visualiztion MaskDetector results
cv::Mat VisualizeResult(const cv::Mat& img,
                        const std::vector<ObjectResult>& results,
                        const std::vector<std::string>& lable_list,
                        const std::vector<int>& colormap) {
  cv::Mat vis_img = img.clone();
  for (int i = 0; i < results.size(); ++i) {
    int w = results[i].rect[1] - results[i].rect[0];
    int h = results[i].rect[3] - results[i].rect[2];
    cv::Rect roi = cv::Rect(results[i].rect[0], results[i].rect[2], w, h);

    // Configure color and text size
80 81 82 83 84
    std::ostringstream oss;
    oss << std::setiosflags(std::ios::fixed) << std::setprecision(4);
    oss << lable_list[results[i].class_id] << " ";
    oss << results[i].confidence;
    std::string text = oss.str();
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    int c1 = colormap[3 * results[i].class_id + 0];
    int c2 = colormap[3 * results[i].class_id + 1];
    int c3 = colormap[3 * results[i].class_id + 2];
    cv::Scalar roi_color = cv::Scalar(c1, c2, c3);
    int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
    double font_scale = 0.5f;
    float thickness = 0.5;
    cv::Size text_size = cv::getTextSize(text,
                                         font_face,
                                         font_scale,
                                         thickness,
                                         nullptr);
    cv::Point origin;
    origin.x = roi.x;
    origin.y = roi.y;

    // Configure text background
    cv::Rect text_back = cv::Rect(results[i].rect[0],
                                  results[i].rect[2] - text_size.height,
                                  text_size.width,
                                  text_size.height);

    // Draw roi object, text, and background
    cv::rectangle(vis_img, roi, roi_color, 2);
    cv::rectangle(vis_img, text_back, roi_color, -1);
    cv::putText(vis_img,
                text,
                origin,
                font_face,
114
                font_scale,
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
                cv::Scalar(255, 255, 255),
                thickness);
  }
  return vis_img;
}

void ObjectDetector::Preprocess(const cv::Mat& ori_im) {
  // Clone the image : keep the original mat for postprocess
  cv::Mat im = ori_im.clone();
  cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
  preprocessor_.Run(&im, &inputs_);
}

void ObjectDetector::Postprocess(
    const cv::Mat& raw_mat,
    std::vector<ObjectResult>* result) {
  result->clear();
  int rh = 1;
  int rw = 1;
  if (config_.arch_ == "SSD" || config_.arch_ == "Face") {
    rh = raw_mat.rows;
    rw = raw_mat.cols;
  }

  int total_size = output_data_.size() / 6;
  for (int j = 0; j < total_size; ++j) {
    // Class id
    int class_id = static_cast<int>(round(output_data_[0 + j * 6]));
    // Confidence score
    float score = output_data_[1 + j * 6];
    int xmin = (output_data_[2 + j * 6] * rw);
    int ymin = (output_data_[3 + j * 6] * rh);
    int xmax = (output_data_[4 + j * 6] * rw);
    int ymax = (output_data_[5 + j * 6] * rh);
    int wd = xmax - xmin;
    int hd = ymax - ymin;
151
    if (score > threshold_ && class_id > -1) {
152 153 154 155 156 157 158 159 160 161
      ObjectResult result_item;
      result_item.rect = {xmin, xmax, ymin, ymax};
      result_item.class_id = class_id;
      result_item.confidence = score;
      result->push_back(result_item);
    }
  }
}

void ObjectDetector::Predict(const cv::Mat& im,
162 163 164 165 166
      const double threshold,
      const int warmup,
      const int repeats,
      const bool run_benchmark,
      std::vector<ObjectResult>* result) {
167 168 169 170 171
  // Preprocess image
  Preprocess(im);
  // Prepare input tensor
  auto input_names = predictor_->GetInputNames();
  for (const auto& tensor_name : input_names) {
172
    auto in_tensor = predictor_->GetInputHandle(tensor_name);
173
    if (tensor_name == "image") {
174 175
      int rh = inputs_.input_shape_[0];
      int rw = inputs_.input_shape_[1];
176
      in_tensor->Reshape({1, 3, rh, rw});
177
      in_tensor->CopyFromCpu(inputs_.im_data_.data());
178
    } else if (tensor_name == "im_shape") {
179 180 181 182 183
      in_tensor->Reshape({1, 2});
      in_tensor->CopyFromCpu(inputs_.im_shape_.data());
    } else if (tensor_name == "scale_factor") {
      in_tensor->Reshape({1, 2});
      in_tensor->CopyFromCpu(inputs_.scale_factor_.data());
184 185 186
    }
  }
  // Run predictor
187 188 189 190 191 192 193 194 195 196
  for (int i = 0; i < warmup; i++)
  {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetOutputHandle(output_names[0]);
    std::vector<int> output_shape = out_tensor->shape();
    // Calculate output length
    int output_size = 1;
    for (int j = 0; j < output_shape.size(); ++j) {
197
      output_size *= output_shape[j];
198 199 200 201 202 203 204
    }

    if (output_size < 6) {
      std::cerr << "[WARNING] No object detected." << std::endl;
    }
    output_data_.resize(output_size);
    out_tensor->CopyToCpu(output_data_.data()); 
205
  }
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

  std::clock_t start = clock();
  for (int i = 0; i < repeats; i++)
  {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetOutputHandle(output_names[0]);
    std::vector<int> output_shape = out_tensor->shape();
    // Calculate output length
    int output_size = 1;
    for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
    }

    if (output_size < 6) {
      std::cerr << "[WARNING] No object detected." << std::endl;
    }
    output_data_.resize(output_size);
    out_tensor->CopyToCpu(output_data_.data()); 
  }
  std::clock_t end = clock();
  float ms = static_cast<float>(end - start) / CLOCKS_PER_SEC / repeats * 1000.;
  printf("Inference: %f ms per batch image\n", ms);
230
  // Postprocessing result
231 232 233
  if(!run_benchmark) {
    Postprocess(im,  result);
  }
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
}

std::vector<int> GenerateColorMap(int num_class) {
  auto colormap = std::vector<int>(3 * num_class, 0);
  for (int i = 0; i < num_class; ++i) {
    int j = 0;
    int lab = i;
    while (lab) {
      colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j));
      colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
      colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
      ++j;
      lab >>= 3;
    }
  }
  return colormap;
}

}  // namespace PaddleDetection