main.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>

#include <iostream>
#include <string>
#include <vector>
20 21 22 23 24 25 26 27 28 29
#include <sys/types.h>
#include <sys/stat.h>

#ifdef _WIN32
#include <direct.h>
#include <io.h>
#elif LINUX
#include <stdarg.h>
#include <sys/stat.h>
#endif
30 31 32 33 34 35 36 37

#include "include/object_detector.h"


DEFINE_string(model_dir, "", "Path of inference model");
DEFINE_string(image_path, "", "Path of input image");
DEFINE_string(video_path, "", "Path of input video");
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
DEFINE_bool(use_camera, false, "Use camera or not");
DEFINE_string(run_mode, "fluid", "Mode of running(fluid/trt_fp32/trt_fp16)");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute");
DEFINE_int32(camera_id, -1, "Device id of camera to predict");
DEFINE_bool(run_benchmark, false, "Whether to predict a image_file repeatedly for benchmark");
DEFINE_double(threshold, 0.5, "Threshold of score.");
DEFINE_string(output_dir, "output", "Directory of output visualization files.");

static std::string DirName(const std::string &filepath) {
  auto pos = filepath.rfind(OS_PATH_SEP);
  if (pos == std::string::npos) {
    return "";
  }
  return filepath.substr(0, pos);
}

static bool PathExists(const std::string& path){
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}

static void MkDir(const std::string& path) {
  if (PathExists(path)) return;
  int ret = 0;
#ifdef _WIN32
  ret = _mkdir(path.c_str());
#else
  ret = mkdir(path.c_str(), 0755);
#endif  // !_WIN32
  if (ret != 0) {
    std::string path_error(path);
    path_error += " mkdir failed!";
    throw std::runtime_error(path_error);
  }
}

static void MkDirs(const std::string& path) {
  if (path.empty()) return;
  if (PathExists(path)) return;

  MkDirs(DirName(path));
  MkDir(path);
}
86 87 88 89 90

void PredictVideo(const std::string& video_path,
                  PaddleDetection::ObjectDetector* det) {
  // Open video
  cv::VideoCapture capture;
91 92 93 94 95
  if (FLAGS_camera_id != -1){
    capture.open(FLAGS_camera_id);
  }else{
    capture.open(video_path.c_str());
  }
96 97 98 99 100 101 102 103 104 105 106 107
  if (!capture.isOpened()) {
    printf("can not open video : %s\n", video_path.c_str());
    return;
  }

  // Get Video info : resolution, fps
  int video_width = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_WIDTH));
  int video_height = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_HEIGHT));
  int video_fps = static_cast<int>(capture.get(CV_CAP_PROP_FPS));

  // Create VideoWriter for output
  cv::VideoWriter video_out;
108
  std::string video_out_path = "output.mp4";
109
  video_out.open(video_out_path.c_str(),
110
                 0x00000021,
111 112 113 114 115 116 117 118 119 120 121 122 123
                 video_fps,
                 cv::Size(video_width, video_height),
                 true);
  if (!video_out.isOpened()) {
    printf("create video writer failed!\n");
    return;
  }

  std::vector<PaddleDetection::ObjectResult> result;
  auto labels = det->GetLabelList();
  auto colormap = PaddleDetection::GenerateColorMap(labels.size());
  // Capture all frames and do inference
  cv::Mat frame;
124
  int frame_id = 0;
125 126 127 128
  while (capture.read(frame)) {
    if (frame.empty()) {
      break;
    }
129
    det->Predict(frame, 0.5, 0, 1, false, &result);
130 131
    cv::Mat out_im = PaddleDetection::VisualizeResult(
        frame, result, labels, colormap);
132 133 134 135 136 137 138 139 140 141
    for (const auto& item : result) {
      printf("In frame id %d, we detect: class=%d confidence=%.2f rect=[%d %d %d %d]\n",
        frame_id,
        item.class_id,
        item.confidence,
        item.rect[0],
        item.rect[1],
        item.rect[2],
        item.rect[3]);
   }   
142
    video_out.write(out_im);
143
    frame_id += 1;
144 145 146 147 148 149
  }
  capture.release();
  video_out.release();
}

void PredictImage(const std::string& image_path,
150 151 152 153
                  const double threshold,
                  const bool run_benchmark,
                  PaddleDetection::ObjectDetector* det,
                  const std::string& output_dir = "output") {
154 155 156 157
  // Open input image as an opencv cv::Mat object
  cv::Mat im = cv::imread(image_path, 1);
  // Store all detected result
  std::vector<PaddleDetection::ObjectResult> result;
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  if (run_benchmark)
  {
    det->Predict(im, threshold, 100, 100, run_benchmark, &result);
  }else
  {
    det->Predict(im, 0.5, 0, 1, run_benchmark, &result);
    for (const auto& item : result) {
      printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
          item.class_id,
          item.confidence,
          item.rect[0],
          item.rect[1],
          item.rect[2],
          item.rect[3]);
    }
    // Visualization result
    auto labels = det->GetLabelList();
    auto colormap = PaddleDetection::GenerateColorMap(labels.size());
    cv::Mat vis_img = PaddleDetection::VisualizeResult(
        im, result, labels, colormap);
    std::vector<int> compression_params;
    compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
    compression_params.push_back(95);
    std::string output_path(output_dir);
    if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
      output_path += OS_PATH_SEP;
    }
    output_path += "output.jpg";
    cv::imwrite(output_path, vis_img, compression_params);
    printf("Visualized output saved as %s\n", output_path.c_str());
188 189 190 191 192 193 194 195
  }
}

int main(int argc, char** argv) {
  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);
  if (FLAGS_model_dir.empty()
      || (FLAGS_image_path.empty() && FLAGS_video_path.empty())) {
196
    std::cout << "Usage: ./main --model_dir=/PATH/TO/INFERENCE_MODEL/ "
197
                << "--image_path=/PATH/TO/INPUT/IMAGE/" << std::endl;
198 199 200 201 202 203
    return -1;
  }
  if (!(FLAGS_run_mode == "fluid" || FLAGS_run_mode == "trt_fp32"
      || FLAGS_run_mode == "trt_fp16")) {
    std::cout << "run_mode should be 'fluid', 'trt_fp32' or 'trt_fp16'.";
    return -1;
204 205
  }
  // Load model and create a object detector
206
  
207
  PaddleDetection::ObjectDetector det(FLAGS_model_dir, FLAGS_use_gpu,
208
    FLAGS_run_mode, FLAGS_gpu_id);
209
  // Do inference on input video or image
210
  if (!FLAGS_video_path.empty() || FLAGS_use_camera) {
211 212
    PredictVideo(FLAGS_video_path, &det);
  } else if (!FLAGS_image_path.empty()) {
213 214 215 216
    if (!PathExists(FLAGS_output_dir)) {
      MkDirs(FLAGS_output_dir);
    }
    PredictImage(FLAGS_image_path, FLAGS_threshold, FLAGS_run_benchmark, &det, FLAGS_output_dir);
217 218 219
  }
  return 0;
}