ssd_head.py 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

Q
qingqing01 已提交
15 16 17 18
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
19 20 21
from paddle.regularizer import L2Decay
from paddle import ParamAttr

22 23
from ..layers import AnchorGeneratorSSD

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

class SepConvLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 padding=1,
                 conv_decay=0,
                 name=None):
        super(SepConvLayer, self).__init__()
        self.dw_conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=kernel_size,
            stride=1,
            padding=padding,
            groups=in_channels,
            weight_attr=ParamAttr(
                name=name + "_dw_weights", regularizer=L2Decay(conv_decay)),
            bias_attr=False)

        self.bn = nn.BatchNorm2D(
            in_channels,
            weight_attr=ParamAttr(
                name=name + "_bn_scale", regularizer=L2Decay(0.)),
            bias_attr=ParamAttr(
                name=name + "_bn_offset", regularizer=L2Decay(0.)))

        self.pw_conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,
            stride=1,
            padding=0,
            weight_attr=ParamAttr(
                name=name + "_pw_weights", regularizer=L2Decay(conv_decay)),
            bias_attr=False)

    def forward(self, x):
        x = self.dw_conv(x)
        x = F.relu6(self.bn(x))
        x = self.pw_conv(x)
        return x
Q
qingqing01 已提交
67 68 69 70 71 72 73 74


@register
class SSDHead(nn.Layer):
    __shared__ = ['num_classes']
    __inject__ = ['anchor_generator', 'loss']

    def __init__(self,
75
                 num_classes=80,
Q
qingqing01 已提交
76
                 in_channels=(512, 1024, 512, 256, 256, 256),
77
                 anchor_generator=AnchorGeneratorSSD().__dict__,
78 79 80 81
                 kernel_size=3,
                 padding=1,
                 use_sepconv=False,
                 conv_decay=0.,
Q
qingqing01 已提交
82 83
                 loss='SSDLoss'):
        super(SSDHead, self).__init__()
84 85
        # add background class
        self.num_classes = num_classes + 1
Q
qingqing01 已提交
86 87 88 89
        self.in_channels = in_channels
        self.anchor_generator = anchor_generator
        self.loss = loss

90 91 92 93
        if isinstance(anchor_generator, dict):
            self.anchor_generator = AnchorGeneratorSSD(**anchor_generator)

        self.num_priors = self.anchor_generator.num_priors
Q
qingqing01 已提交
94 95 96
        self.box_convs = []
        self.score_convs = []
        for i, num_prior in enumerate(self.num_priors):
97 98 99 100
            box_conv_name = "boxes{}".format(i)
            if not use_sepconv:
                box_conv = self.add_sublayer(
                    box_conv_name,
Q
qingqing01 已提交
101 102 103
                    nn.Conv2D(
                        in_channels=in_channels[i],
                        out_channels=num_prior * 4,
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
                        kernel_size=kernel_size,
                        padding=padding))
            else:
                box_conv = self.add_sublayer(
                    box_conv_name,
                    SepConvLayer(
                        in_channels=in_channels[i],
                        out_channels=num_prior * 4,
                        kernel_size=kernel_size,
                        padding=padding,
                        conv_decay=conv_decay,
                        name=box_conv_name))
            self.box_convs.append(box_conv)

            score_conv_name = "scores{}".format(i)
            if not use_sepconv:
                score_conv = self.add_sublayer(
                    score_conv_name,
Q
qingqing01 已提交
122 123
                    nn.Conv2D(
                        in_channels=in_channels[i],
124
                        out_channels=num_prior * self.num_classes,
125 126 127 128 129 130 131
                        kernel_size=kernel_size,
                        padding=padding))
            else:
                score_conv = self.add_sublayer(
                    score_conv_name,
                    SepConvLayer(
                        in_channels=in_channels[i],
132
                        out_channels=num_prior * self.num_classes,
133 134 135 136 137
                        kernel_size=kernel_size,
                        padding=padding,
                        conv_decay=conv_decay,
                        name=score_conv_name))
            self.score_convs.append(score_conv)
Q
qingqing01 已提交
138

139 140 141 142 143
    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    def forward(self, feats, image, gt_bbox=None, gt_class=None):
Q
qingqing01 已提交
144 145 146
        box_preds = []
        cls_scores = []
        prior_boxes = []
K
Kaipeng Deng 已提交
147 148
        for feat, box_conv, score_conv in zip(feats, self.box_convs,
                                              self.score_convs):
Q
qingqing01 已提交
149 150 151 152 153 154 155 156 157 158 159 160
            box_pred = box_conv(feat)
            box_pred = paddle.transpose(box_pred, [0, 2, 3, 1])
            box_pred = paddle.reshape(box_pred, [0, -1, 4])
            box_preds.append(box_pred)

            cls_score = score_conv(feat)
            cls_score = paddle.transpose(cls_score, [0, 2, 3, 1])
            cls_score = paddle.reshape(cls_score, [0, -1, self.num_classes])
            cls_scores.append(cls_score)

        prior_boxes = self.anchor_generator(feats, image)

161 162 163 164
        if self.training:
            return self.get_loss(box_preds, cls_scores, gt_bbox, gt_class,
                                 prior_boxes)
        else:
K
Kaipeng Deng 已提交
165
            return (box_preds, cls_scores), prior_boxes
Q
qingqing01 已提交
166

167 168
    def get_loss(self, boxes, scores, gt_bbox, gt_class, prior_boxes):
        return self.loss(boxes, scores, gt_bbox, gt_class, prior_boxes)