cross_entropy.cu 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/math/cross_entropy.h"

namespace paddle {
namespace operators {
namespace math {

namespace {
template <typename T>
__global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
                                   const int N, const int D) {
  // TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file.
  // CUDA_1D_KERNEL_LOOP(i, N) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
    PADDLE_ASSERT(label[i] >= 0 && label[i] < D);
    Y[i] = -math::TolerableValue<T>()(log(X[i * D + label[i]]));
  }
}

template <typename T>
__device__ __forceinline__ T sum_single_warp(T val) {
  val += __shfl_down(val, 16);
  val += __shfl_down(val, 8);
  val += __shfl_down(val, 4);
  val += __shfl_down(val, 2);
  val += __shfl_down(val, 1);
  return val;
}

template <typename T>
__global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
                                       const int class_num) {
  int tid = threadIdx.x;
  extern __shared__ T d_sum[];
  d_sum[tid] = 0;

  int cur_idx = tid;
  int next_idx = blockIdx.x * class_num + tid;
  while (cur_idx < class_num) {
    d_sum[tid] +=
        math::TolerableValue<T>()(std::log(X[next_idx])) * label[next_idx];
    next_idx += blockDim.x;
    cur_idx += blockDim.x;
  }
  __syncthreads();

  for (unsigned int stride = blockDim.x >> 1; stride >= 32; stride >>= 1) {
    if (tid < stride) d_sum[tid] += d_sum[tid + stride];
    __syncthreads();
  }

  T val = d_sum[tid];
  val = sum_single_warp<T>(val);
  if (tid == 0) Y[blockIdx.x] = -val;
}
}  // namespace

using Tensor = framework::Tensor;

template <typename T>
class CrossEntropyFunctor<platform::GPUPlace, T> {
 public:
Q
qijun 已提交
77 78
  void operator()(const framework::DeviceContext& ctx, framework::Tensor* out,
                  const framework::Tensor* prob,
79 80 81 82 83 84 85 86 87 88 89
                  const framework::Tensor* labels, bool softLabel) {
    const T* prob_data = prob->data<T>();
    T* loss_data = out->mutable_data<T>(ctx.GetPlace());

    int batch_size = prob->dims()[0];
    int class_num = prob->dims()[1];

    if (softLabel) {
      const T* label_data = labels->data<T>();
      int block = class_num > 512 ? 512 : pow(2, int(std::log2(class_num)));

Q
qijun 已提交
90 91 92 93
      SoftCrossEntropyKernel<T><<<
          batch_size, block, block * sizeof(T),
          reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
          loss_data, prob_data, label_data, class_num);
94 95 96 97 98
    } else {
      const int* label_data = labels->data<int>();
      int block = 512;
      int grid = (batch_size + block - 1) / block;
      CrossEntropyKernel<T><<<
Q
qijun 已提交
99 100 101
          grid, block, 0,
          reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
          loss_data, prob_data, label_data, batch_size, class_num);
102 103 104 105 106 107 108 109
    }
  }
};

template class CrossEntropyFunctor<platform::GPUPlace, float>;
}  // namespace math
}  // namespace operators
}  // namespace paddle