test_imperative_resnet.py 13.3 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
23
from paddle.fluid.layer_helper import LayerHelper
M
minqiyang 已提交
24 25 26 27 28
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.nn import Conv2D, Pool2D, BatchNorm, FC
from paddle.fluid.imperative.base import to_variable
from test_imperative_base import new_program_scope

29
batch_size = 8
M
minqiyang 已提交
30 31 32 33 34 35
train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
M
minqiyang 已提交
36
        "batch_size": batch_size,
M
minqiyang 已提交
37 38
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
M
minqiyang 已提交
39
    },
M
minqiyang 已提交
40
    "batch_size": batch_size,
M
minqiyang 已提交
41 42
    "lr": 0.1,
    "total_images": 1281164,
M
minqiyang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
}


def optimizer_setting(params):
    ls = params["learning_strategy"]
    if ls["name"] == "piecewise_decay":
        if "total_images" not in params:
            total_images = 1281167
        else:
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
        step = int(total_images / batch_size + 1)

        bd = [step * e for e in ls["epochs"]]
        base_lr = params["lr"]
        lr = []
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
60
        optimizer = fluid.optimizer.SGD(learning_rate=0.01)
M
minqiyang 已提交
61
        # TODO(minqiyang): Add learning rate scheduler support to imperative mode
M
minqiyang 已提交
62 63 64 65 66 67
        #  optimizer = fluid.optimizer.Momentum(
    #  learning_rate=params["lr"],
    #  learning_rate=fluid.layers.piecewise_decay(
    #  boundaries=bd, values=lr),
    #  momentum=0.9,
    #  regularization=fluid.regularizer.L2Decay(1e-4))
M
minqiyang 已提交
68 69 70 71 72

    return optimizer


class ConvBNLayer(fluid.imperative.Layer):
M
minqiyang 已提交
73 74 75 76 77 78 79
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
M
minqiyang 已提交
80 81 82
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
M
minqiyang 已提交
83 84 85 86 87
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
M
minqiyang 已提交
88 89 90 91
            groups=groups,
            act=None,
            bias_attr=None)

92
        self._batch_norm = BatchNorm(num_filters, act=act)
M
minqiyang 已提交
93 94 95

    def forward(self, inputs):
        y = self._conv(inputs)
96
        y = self._batch_norm(y)
M
minqiyang 已提交
97 98 99 100 101

        return y


class BottleneckBlock(fluid.imperative.Layer):
M
minqiyang 已提交
102
    def __init__(self, num_channels, num_filters, stride, shortcut=True):
M
minqiyang 已提交
103 104 105
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
M
minqiyang 已提交
106 107 108 109
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
            act='relu')
M
minqiyang 已提交
110
        self.conv1 = ConvBNLayer(
M
minqiyang 已提交
111 112 113 114 115
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu')
M
minqiyang 已提交
116
        self.conv2 = ConvBNLayer(
M
minqiyang 已提交
117 118 119 120
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None)
M
minqiyang 已提交
121

M
minqiyang 已提交
122
        if not shortcut:
M
minqiyang 已提交
123
            self.short = ConvBNLayer(
M
minqiyang 已提交
124 125 126 127
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride)
M
minqiyang 已提交
128 129 130

        self.shortcut = shortcut

M
minqiyang 已提交
131 132
        self._num_channels_out = num_filters * 4

M
minqiyang 已提交
133
    def forward(self, inputs):
M
minqiyang 已提交
134 135 136
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
M
minqiyang 已提交
137 138

        if self.shortcut:
M
minqiyang 已提交
139 140 141
            short = inputs
        else:
            short = self.short(inputs)
M
minqiyang 已提交
142

M
minqiyang 已提交
143 144 145
        y = fluid.layers.elementwise_add(x=short, y=conv2)

        layer_helper = LayerHelper('elementwise_add_activation', act='relu')
M
minqiyang 已提交
146
        return layer_helper.append_activation(y)
M
minqiyang 已提交
147 148 149


class ResNet(fluid.imperative.Layer):
M
minqiyang 已提交
150
    def __init__(self, layers=50, class_dim=102):
M
minqiyang 已提交
151 152
        super(ResNet, self).__init__()

M
minqiyang 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166
        self.layers = layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_filters = [64, 128, 256, 512]

        self.conv = ConvBNLayer(
M
minqiyang 已提交
167
            num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu')
M
minqiyang 已提交
168 169 170
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

M
minqiyang 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        #  self.bottleneck_block_list = []
        #  num_channels = 64
        #  for block in range(len(depth)):
        #  shortcut = False
        #  for i in range(depth[block]):
        #  bottleneck_block = BottleneckBlock(
        #  num_channels=num_channels,
        #  num_filters=num_filters[block],
        #  stride=2 if i == 0 and block != 0 else 1,
        #  shortcut=shortcut)
        #  num_channels = bottleneck_block._num_channels_out
        #  self.bottleneck_block_list.append(bottleneck_block)
        #  shortcut = True

        #  self.pool2d_avg = Pool2D(
        #  pool_size=7, pool_type='avg', global_pooling=True)
M
minqiyang 已提交
187 188 189 190 191 192 193 194 195 196 197 198

        import math
        stdv = 1.0 / math.sqrt(2048 * 1.0)

        self.out = FC(size=class_dim,
                      act='softmax',
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.Uniform(-stdv, stdv)))

    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
M
minqiyang 已提交
199 200 201
        #  for bottleneck_block in self.bottleneck_block_list:
        #  y = bottleneck_block(y)
        #  y = self.pool2d_avg(y)
M
minqiyang 已提交
202
        y = self.out(y)
M
minqiyang 已提交
203 204 205 206
        return y


class TestImperativeResnet(unittest.TestCase):
M
minqiyang 已提交
207
    def test_resnet_float32(self):
M
minqiyang 已提交
208 209
        seed = 90

210
        batch_size = train_parameters["batch_size"]
M
minqiyang 已提交
211
        batch_num = 1
M
minqiyang 已提交
212
        with fluid.imperative.guard(place=fluid.CPUPlace()):
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            resnet = ResNet()
            optimizer = optimizer_setting(train_parameters)
            np.random.seed(seed)
            import random
            random.seed = seed
            train_reader = paddle.batch(
                paddle.dataset.flowers.train(use_xmap=False),
                batch_size=batch_size)

            dy_param_init_value = {}
            for param in fluid.default_main_program().global_block(
            ).all_parameters():
                dy_param_init_value[param.name] = param._numpy()

            for batch_id, data in enumerate(train_reader()):
M
minqiyang 已提交
231
                if batch_id >= batch_num:
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
                    break

                dy_x_data = np.array(
                    [x[0].reshape(3, 224, 224) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    batch_size, 1)

                img = to_variable(dy_x_data)
                label = to_variable(y_data)
                label._stop_gradient = True

                out = resnet(img)
                loss = fluid.layers.cross_entropy(input=out, label=label)
                avg_loss = fluid.layers.mean(x=loss)

                dy_out = avg_loss._numpy()

                if batch_id == 0:
                    for param in fluid.default_main_program().global_block(
                    ).all_parameters():
                        if param.name not in dy_param_init_value:
                            dy_param_init_value[param.name] = param._numpy()

                avg_loss._backward()

                dy_grad_value = {}
                for param in fluid.default_main_program().global_block(
                ).all_parameters():
                    if not param.stop_gradient:
                        np_array = np.array(param._ivar._grad_ivar().value()
                                            .get_tensor())
                        dy_grad_value[param.name + core.grad_var_suffix(
                        )] = np_array

                optimizer.minimize(avg_loss)
M
minqiyang 已提交
267
                resnet.clear_gradients()
268 269 270 271 272

                dy_param_value = {}
                for param in fluid.default_main_program().global_block(
                ).all_parameters():
                    dy_param_value[param.name] = param._numpy()
M
minqiyang 已提交
273 274

        with new_program_scope():
M
minqiyang 已提交
275 276 277
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
278 279 280
            exe = fluid.Executor(fluid.CPUPlace())
            #  exe = fluid.Executor(fluid.CPUPlace(
            #  ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
281 282 283

            resnet = ResNet()
            optimizer = optimizer_setting(train_parameters)
M
minqiyang 已提交
284 285 286 287

            np.random.seed(seed)
            import random
            random.seed = seed
288
            train_reader = paddle.batch(
M
minqiyang 已提交
289 290
                paddle.dataset.flowers.train(use_xmap=False),
                batch_size=batch_size)
291 292 293 294 295 296 297 298 299 300 301 302

            img = fluid.layers.data(
                name='pixel', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            out = resnet(img)
            loss = fluid.layers.cross_entropy(input=out, label=label)
            avg_loss = fluid.layers.mean(x=loss)
            optimizer.minimize(avg_loss)

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
303
            static_grad_name_list = []
304 305 306
            for param in fluid.default_startup_program().global_block(
            ).all_parameters():
                static_param_name_list.append(param.name)
M
minqiyang 已提交
307 308 309 310 311
            for param in fluid.default_main_program().global_block(
            ).all_parameters():
                if not param.stop_gradient:
                    static_grad_name_list.append(param.name +
                                                 core.grad_var_suffix())
312 313 314 315 316 317 318 319

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

            for batch_id, data in enumerate(train_reader()):
M
minqiyang 已提交
320
                if batch_id >= batch_num:
321 322
                    break

M
minqiyang 已提交
323
                static_x_data = np.array(
324 325 326 327
                    [x[0].reshape(3, 224, 224) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    [batch_size, 1])

M
minqiyang 已提交
328
                fetch_list = [avg_loss.name]
329
                fetch_list.extend(static_param_name_list)
M
minqiyang 已提交
330
                fetch_list.extend(static_grad_name_list)
331
                out = exe.run(fluid.default_main_program(),
M
minqiyang 已提交
332
                              feed={"pixel": static_x_data,
333 334 335 336
                                    "label": y_data},
                              fetch_list=fetch_list)

                static_param_value = {}
M
minqiyang 已提交
337
                static_grad_value = {}
338
                static_out = out[0]
M
minqiyang 已提交
339 340 341 342 343 344 345 346 347 348 349
                param_start_pos = 1
                grad_start_pos = len(static_param_name_list) + param_start_pos
                for i in range(param_start_pos,
                               len(static_param_name_list) + param_start_pos):
                    static_param_value[static_param_name_list[
                        i - param_start_pos]] = out[i]
                for i in range(grad_start_pos,
                               len(static_grad_name_list) + grad_start_pos):
                    static_grad_value[static_grad_name_list[
                        i - grad_start_pos]] = out[i]

M
minqiyang 已提交
350
        print(static_out, dy_out)
M
minqiyang 已提交
351 352 353 354 355
        self.assertTrue(np.allclose(static_out, dy_out))

        self.assertEqual(len(dy_param_init_value), len(static_param_init_value))
        for key, value in six.iteritems(static_param_init_value):
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))
356 357
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
358

M
minqiyang 已提交
359
        self.assertEqual(len(dy_grad_value), len(static_grad_value))
M
minqiyang 已提交
360
        for key, value in six.iteritems(static_grad_value):
M
minqiyang 已提交
361 362 363
            if not np.allclose(value, dy_grad_value[key]):
                print(key)
            #self.assertTrue(np.allclose(value, dy_grad_value[key]))
364 365
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
366

M
minqiyang 已提交
367
        self.assertEqual(len(dy_param_value), len(static_param_value))
M
minqiyang 已提交
368
        for key, value in six.iteritems(static_param_value):
369 370 371
            self.assertTrue(np.allclose(value, dy_param_value[key]))
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
M
minqiyang 已提交
372 373 374 375


if __name__ == '__main__':
    unittest.main()