README.md 7.8 KB
Newer Older
W
Wenyu 已提交
1 2
# DETRs Beat YOLOs on Real-time Object Detection

W
Wenyu 已提交
3
## 最新动态
W
Wenyu 已提交
4

W
Wenyu 已提交
5 6
- 发布RT-DETR-R50和RT-DETR-R101的代码和预训练模型
- 发布RT-DETR-L和RT-DETR-X的代码和预训练模型
W
Wenyu 已提交
7 8 9
- 发布RT-DETR-R50-m模型(scale模型的范例)
- 发布RT-DETR-R34模型
- 发布RT-DETR-R18模型
W
Wenyu 已提交
10

W
Wenyu 已提交
11 12 13 14
## 简介
<!-- We propose a **R**eal-**T**ime **DE**tection **TR**ansformer (RT-DETR), the first real-time end-to-end object detector to our best knowledge. Specifically, we design an efficient hybrid encoder to efficiently process multi-scale features by decoupling the intra-scale interaction and cross-scale fusion, and propose IoU-aware query selection to improve the initialization of object queries. In addition, our proposed detector supports flexibly adjustment of the inference speed by using different decoder layers without the need for retraining, which facilitates the practical application of real-time object detectors. Our RT-DETR-L achieves 53.0% AP on COCO val2017 and 114 FPS on T4 GPU, while RT-DETR-X achieves 54.8% AP and 74 FPS, outperforming all YOLO detectors of the same scale in both speed and accuracy. Furthermore, our RT-DETR-R50 achieves 53.1% AP and 108 FPS, outperforming DINO-Deformable-DETR-R50 by 2.2% AP in accuracy and by about 21 times in FPS.  -->
RT-DETR是第一个实时端到端目标检测器。具体而言,我们设计了一个高效的混合编码器,通过解耦尺度内交互和跨尺度融合来高效处理多尺度特征,并提出了IoU感知的查询选择机制,以优化解码器查询的初始化。此外,RT-DETR支持通过使用不同的解码器层来灵活调整推理速度,而不需要重新训练,这有助于实时目标检测器的实际应用。RT-DETR-L在COCO val2017上实现了53.0%的AP,在T4 GPU上实现了114FPS,RT-DETR-X实现了54.8%的AP和74FPS,在速度和精度方面都优于相同规模的所有YOLO检测器。RT-DETR-R50实现了53.1%的AP和108FPS,RT-DETR-R101实现了54.3%的AP和74FPS,在精度上超过了全部使用相同骨干网络的DETR检测器。
若要了解更多细节,请参考我们的论文[paper](https://arxiv.org/abs/2304.08069).
W
Wenyu 已提交
15

W
Wenyu 已提交
16
<div align="center">
W
Wenyu 已提交
17
  <img src="https://github.com/PaddlePaddle/PaddleDetection/assets/17582080/3184a08e-aa4d-49cf-9079-f3695c4cc1c3" width=500 />
W
Wenyu 已提交
18
</div>
W
Wenyu 已提交
19

W
Wenyu 已提交
20
## 模型
W
Wenyu 已提交
21 22 23

| Model | Epoch | backbone  | input shape | $AP^{val}$ | $AP^{val}_{50}$| Params(M) | FLOPs(G) |  T4 TensorRT FP16(FPS) | Pretrained Model | config |
|:--------------:|:-----:|:----------:| :-------:|:--------------------------:|:---------------------------:|:---------:|:--------:| :---------------------: |:------------------------------------------------------------------------------------:|:-------------------------------------------:|
W
Wenyu 已提交
24 25 26
| RT-DETR-R18 | 6x |  ResNet-18 | 640 | 46.5 | 63.8 | 20 | 60 | 217 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_r18vd_dec3_6x_coco.pdparams) | [config](./rtdetr_r18vd_6x_coco.yml)
| RT-DETR-R34 | 6x |  ResNet-34 | 640 | 48.9 | 66.8 | 31 | 92 | 161 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_r34vd_dec4_6x_coco.pdparams) | [config](./rtdetr_r34vd_6x_coco.yml)
| RT-DETR-R50-m | 6x |  ResNet-50 | 640 | 51.3 | 69.6 | 36 | 100 | 145 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_m_6x_coco.pdparams) | [config](./rtdetr_r50vd_m_6x_coco.yml)
W
Wenyu 已提交
27 28
| RT-DETR-R50 | 6x |  ResNet-50 | 640 | 53.1 | 71.3 | 42 | 136 | 108 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams) | [config](./rtdetr_r50vd_6x_coco.yml)
| RT-DETR-R101 | 6x |  ResNet-101 | 640 | 54.3 | 72.7 | 76 | 259 | 74 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_r101vd_6x_coco.pdparams) | [config](./rtdetr_r101vd_6x_coco.yml)
W
Wenyu 已提交
29 30
| RT-DETR-L | 6x |  HGNetv2 | 640 | 53.0 | 71.6 | 32 | 110 | 114 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_hgnetv2_l_6x_coco.pdparams) | [config](rtdetr_hgnetv2_l_6x_coco.yml)
| RT-DETR-X | 6x |  HGNetv2 | 640 | 54.8 | 73.1 | 67 | 234 | 74 | [download](https://bj.bcebos.com/v1/paddledet/models/rtdetr_hgnetv2_x_6x_coco.pdparams) | [config](rtdetr_hgnetv2_x_6x_coco.yml)
W
Wenyu 已提交
31

W
Wenyu 已提交
32 33 34 35 36 37 38 39 40 41

**注意事项:**
- RT-DETR 使用4个GPU训练。
- RT-DETR 在COCO train2017上训练,并在val2017上评估。

## 快速开始

<details open>
<summary>依赖包:</summary>

W
Wenyu 已提交
42
- PaddlePaddle >= 2.4.1
W
Wenyu 已提交
43 44 45 46 47

</details>

<details>
<summary>安装</summary>
W
Wenyu 已提交
48

W
Wenyu 已提交
49
- [安装指导文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md)
W
Wenyu 已提交
50

W
Wenyu 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
</details>

<details>
<summary>训练&评估</summary>

- 单卡GPU上训练:

```shell
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0
python tools/train.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml --eval
```

- 多卡GPU上训练:

```shell
# training on multi-GPU
export CUDA_VISIBLE_DEVICES=0,1,2,3
W
Wenyu 已提交
69 70 71
python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml --fleet --eval
```

W
Wenyu 已提交
72 73 74 75 76 77 78 79 80 81 82
- 评估:

```shell
python tools/eval.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml \
              -o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams
```

- 测试:

```shell
python tools/infer.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml \
W
Wenyu 已提交
83 84
              -o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams \
              --infer_img=./demo/000000570688.jpg
W
Wenyu 已提交
85 86 87 88 89 90 91 92 93
```

详情请参考[快速开始文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED.md).

</details>

## 部署

<details open>
W
Wenyu 已提交
94
<summary>1. 导出模型 </summary>
W
Wenyu 已提交
95 96 97 98 99 100 101 102 103 104 105

```shell
cd PaddleDetection
python tools/export_model.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml \
              -o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams trt=True \
              --output_dir=output_inference
```

</details>

<details>
W
Wenyu 已提交
106
<summary>2. 转换模型至ONNX </summary>
W
Wenyu 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

- 安装[Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX) 和 ONNX

```shell
pip install onnx==1.13.0
pip install paddle2onnx==1.0.5
```

- 转换模型:

```shell
paddle2onnx --model_dir=./output_inference/rtdetr_r50vd_6x_coco/ \
            --model_filename model.pdmodel  \
            --params_filename model.pdiparams \
            --opset_version 16 \
            --save_file rtdetr_r50vd_6x_coco.onnx
```
W
Wenyu 已提交
124
</details>
W
Wenyu 已提交
125

W
Wenyu 已提交
126 127 128 129
<details>
<summary>3. 转换成TensorRT(可选) </summary>

- 确保TensorRT的版本>=8.5.1
W
Wenyu 已提交
130
- TRT推理可以参考[RT-DETR](https://github.com/lyuwenyu/RT-DETR)的部分代码或者其他网络资源
W
Wenyu 已提交
131 132 133 134 135 136 137 138 139 140

```shell
trtexec --onnx=./rtdetr_r50vd_6x_coco.onnx \
        --workspace=4096 \
        --shapes=image:1x3x640x640 \
        --saveEngine=rtdetr_r50vd_6x_coco.trt \
        --avgRuns=100 \
        --fp16
```

W
Wenyu 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
-
</details>


## 其他

<details>
<summary>1. 参数量和计算量统计 </summary>
可以使用以下代码片段实现参数量和计算量的统计

```
import paddle
from ppdet.core.workspace import load_config, merge_config
from ppdet.core.workspace import create

W
Wenyu 已提交
156
cfg_path = './configs/rtdetr/rtdetr_r50vd_6x_coco.yml'
W
Wenyu 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169
cfg = load_config(cfg_path)
model = create(cfg.architecture)

blob = {
    'image': paddle.randn([1, 3, 640, 640]),
    'im_shape': paddle.to_tensor([[640], [640]]),
    'scale_factor': paddle.to_tensor([[1.], [1.]])
}
paddle.flops(model, None, blob, custom_ops=None, print_detail=False)
```
</details>


W
Wenyu 已提交
170
<details open>
W
Wenyu 已提交
171 172
<summary>2. YOLOs端到端速度测速 </summary>

W
Wenyu 已提交
173
- 可以参考[RT-DETR](https://github.com/lyuwenyu/RT-DETR) benchmark部分或者其他网络资源
W
Wenyu 已提交
174

W
Wenyu 已提交
175 176
</details>

W
Wenyu 已提交
177 178


W
Wenyu 已提交
179 180
## 引用RT-DETR
如果需要在你的研究中使用RT-DETR,请通过以下方式引用我们的论文:
W
Wenyu 已提交
181 182 183 184 185 186 187 188 189 190
```
@misc{lv2023detrs,
      title={DETRs Beat YOLOs on Real-time Object Detection},
      author={Wenyu Lv and Shangliang Xu and Yian Zhao and Guanzhong Wang and Jinman Wei and Cheng Cui and Yuning Du and Qingqing Dang and Yi Liu},
      year={2023},
      eprint={2304.08069},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```