ppyoloe_head.py 17.2 KB
Newer Older
S
shangliang Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register

from ..bbox_utils import batch_distance2bbox
from ..losses import GIoULoss
from ..initializer import bias_init_with_prob, constant_, normal_
from ..assigners.utils import generate_anchors_for_grid_cell
from ppdet.modeling.backbones.cspresnet import ConvBNLayer
W
wangguanzhong 已提交
25
from ppdet.modeling.ops import get_static_shape, get_act_fn
W
wangxinxin08 已提交
26
from ppdet.modeling.layers import MultiClassNMS
S
shangliang Xu 已提交
27

S
shangliang Xu 已提交
28
__all__ = ['PPYOLOEHead']
S
shangliang Xu 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


class ESEAttn(nn.Layer):
    def __init__(self, feat_channels, act='swish'):
        super(ESEAttn, self).__init__()
        self.fc = nn.Conv2D(feat_channels, feat_channels, 1)
        self.conv = ConvBNLayer(feat_channels, feat_channels, 1, act=act)

        self._init_weights()

    def _init_weights(self):
        normal_(self.fc.weight, std=0.001)

    def forward(self, feat, avg_feat):
        weight = F.sigmoid(self.fc(avg_feat))
        return self.conv(feat * weight)


@register
S
shangliang Xu 已提交
48
class PPYOLOEHead(nn.Layer):
49
    __shared__ = [
50 51
        'num_classes', 'eval_size', 'trt', 'exclude_nms',
        'exclude_post_process', 'use_shared_conv'
52
    ]
S
shangliang Xu 已提交
53 54 55 56 57 58 59 60 61 62
    __inject__ = ['static_assigner', 'assigner', 'nms']

    def __init__(self,
                 in_channels=[1024, 512, 256],
                 num_classes=80,
                 act='swish',
                 fpn_strides=(32, 16, 8),
                 grid_cell_scale=5.0,
                 grid_cell_offset=0.5,
                 reg_max=16,
63
                 reg_range=False,
S
shangliang Xu 已提交
64 65 66 67 68
                 static_assigner_epoch=4,
                 use_varifocal_loss=True,
                 static_assigner='ATSSAssigner',
                 assigner='TaskAlignedAssigner',
                 nms='MultiClassNMS',
69
                 eval_size=None,
S
shangliang Xu 已提交
70 71 72 73 74
                 loss_weight={
                     'class': 1.0,
                     'iou': 2.5,
                     'dfl': 0.5,
                 },
S
shangliang Xu 已提交
75
                 trt=False,
76
                 exclude_nms=False,
77 78
                 exclude_post_process=False,
                 use_shared_conv=True):
S
shangliang Xu 已提交
79
        super(PPYOLOEHead, self).__init__()
S
shangliang Xu 已提交
80 81 82 83 84 85
        assert len(in_channels) > 0, "len(in_channels) should > 0"
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.fpn_strides = fpn_strides
        self.grid_cell_scale = grid_cell_scale
        self.grid_cell_offset = grid_cell_offset
86 87 88 89 90 91
        if reg_range:
            self.sm_use = True
            self.reg_range = reg_range
        else:
            self.reg_range = (0, reg_max + 1)
        self.reg_channels = self.reg_range[1] - self.reg_range[0]
S
shangliang Xu 已提交
92 93 94
        self.iou_loss = GIoULoss()
        self.loss_weight = loss_weight
        self.use_varifocal_loss = use_varifocal_loss
95
        self.eval_size = eval_size
S
shangliang Xu 已提交
96 97 98 99 100

        self.static_assigner_epoch = static_assigner_epoch
        self.static_assigner = static_assigner
        self.assigner = assigner
        self.nms = nms
W
wangxinxin08 已提交
101 102
        if isinstance(self.nms, MultiClassNMS) and trt:
            self.nms.trt = trt
S
shangliang Xu 已提交
103
        self.exclude_nms = exclude_nms
104
        self.exclude_post_process = exclude_post_process
105 106
        self.use_shared_conv = use_shared_conv

S
shangliang Xu 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        # stem
        self.stem_cls = nn.LayerList()
        self.stem_reg = nn.LayerList()
        act = get_act_fn(
            act, trt=trt) if act is None or isinstance(act,
                                                       (str, dict)) else act
        for in_c in self.in_channels:
            self.stem_cls.append(ESEAttn(in_c, act=act))
            self.stem_reg.append(ESEAttn(in_c, act=act))
        # pred head
        self.pred_cls = nn.LayerList()
        self.pred_reg = nn.LayerList()
        for in_c in self.in_channels:
            self.pred_cls.append(
                nn.Conv2D(
                    in_c, self.num_classes, 3, padding=1))
            self.pred_reg.append(
                nn.Conv2D(
125
                    in_c, 4 * self.reg_channels, 3, padding=1))
S
shangliang Xu 已提交
126
        # projection conv
127
        self.proj_conv = nn.Conv2D(self.reg_channels, 1, 1, bias_attr=False)
128
        self.proj_conv.skip_quant = True
S
shangliang Xu 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142
        self._init_weights()

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    def _init_weights(self):
        bias_cls = bias_init_with_prob(0.01)
        for cls_, reg_ in zip(self.pred_cls, self.pred_reg):
            constant_(cls_.weight)
            constant_(cls_.bias, bias_cls)
            constant_(reg_.weight)
            constant_(reg_.bias, 1.0)

143 144 145
        proj = paddle.linspace(self.reg_range[0], self.reg_range[1] - 1,
                               self.reg_channels).reshape(
                                   [1, self.reg_channels, 1, 1])
146
        self.proj_conv.weight.set_value(proj)
S
shangliang Xu 已提交
147
        self.proj_conv.weight.stop_gradient = True
148
        if self.eval_size:
S
shangliang Xu 已提交
149
            anchor_points, stride_tensor = self._generate_anchors()
W
wangxinxin08 已提交
150 151
            self.anchor_points = anchor_points
            self.stride_tensor = stride_tensor
S
shangliang Xu 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

    def forward_train(self, feats, targets):
        anchors, anchor_points, num_anchors_list, stride_tensor = \
            generate_anchors_for_grid_cell(
                feats, self.fpn_strides, self.grid_cell_scale,
                self.grid_cell_offset)

        cls_score_list, reg_distri_list = [], []
        for i, feat in enumerate(feats):
            avg_feat = F.adaptive_avg_pool2d(feat, (1, 1))
            cls_logit = self.pred_cls[i](self.stem_cls[i](feat, avg_feat) +
                                         feat)
            reg_distri = self.pred_reg[i](self.stem_reg[i](feat, avg_feat))
            # cls and reg
            cls_score = F.sigmoid(cls_logit)
            cls_score_list.append(cls_score.flatten(2).transpose([0, 2, 1]))
            reg_distri_list.append(reg_distri.flatten(2).transpose([0, 2, 1]))
        cls_score_list = paddle.concat(cls_score_list, axis=1)
        reg_distri_list = paddle.concat(reg_distri_list, axis=1)

        return self.get_loss([
            cls_score_list, reg_distri_list, anchors, anchor_points,
            num_anchors_list, stride_tensor
        ], targets)

S
shangliang Xu 已提交
177
    def _generate_anchors(self, feats=None, dtype='float32'):
S
shangliang Xu 已提交
178 179 180 181 182 183 184
        # just use in eval time
        anchor_points = []
        stride_tensor = []
        for i, stride in enumerate(self.fpn_strides):
            if feats is not None:
                _, _, h, w = feats[i].shape
            else:
185 186
                h = int(self.eval_size[0] / stride)
                w = int(self.eval_size[1] / stride)
S
shangliang Xu 已提交
187 188 189 190 191
            shift_x = paddle.arange(end=w) + self.grid_cell_offset
            shift_y = paddle.arange(end=h) + self.grid_cell_offset
            shift_y, shift_x = paddle.meshgrid(shift_y, shift_x)
            anchor_point = paddle.cast(
                paddle.stack(
S
shangliang Xu 已提交
192
                    [shift_x, shift_y], axis=-1), dtype=dtype)
S
shangliang Xu 已提交
193
            anchor_points.append(anchor_point.reshape([-1, 2]))
S
shangliang Xu 已提交
194
            stride_tensor.append(paddle.full([h * w, 1], stride, dtype=dtype))
S
shangliang Xu 已提交
195 196 197 198 199
        anchor_points = paddle.concat(anchor_points)
        stride_tensor = paddle.concat(stride_tensor)
        return anchor_points, stride_tensor

    def forward_eval(self, feats):
200
        if self.eval_size:
S
shangliang Xu 已提交
201 202 203 204 205
            anchor_points, stride_tensor = self.anchor_points, self.stride_tensor
        else:
            anchor_points, stride_tensor = self._generate_anchors(feats)
        cls_score_list, reg_dist_list = [], []
        for i, feat in enumerate(feats):
206
            _, _, h, w = feat.shape
S
shangliang Xu 已提交
207 208 209 210 211
            l = h * w
            avg_feat = F.adaptive_avg_pool2d(feat, (1, 1))
            cls_logit = self.pred_cls[i](self.stem_cls[i](feat, avg_feat) +
                                         feat)
            reg_dist = self.pred_reg[i](self.stem_reg[i](feat, avg_feat))
212 213
            reg_dist = reg_dist.reshape(
                [-1, 4, self.reg_channels, l]).transpose([0, 2, 3, 1])
214 215 216 217 218
            if self.use_shared_conv:
                reg_dist = self.proj_conv(F.softmax(
                    reg_dist, axis=1)).squeeze(1)
            else:
                reg_dist = F.softmax(reg_dist, axis=1)
S
shangliang Xu 已提交
219 220
            # cls and reg
            cls_score = F.sigmoid(cls_logit)
221
            cls_score_list.append(cls_score.reshape([-1, self.num_classes, l]))
222
            reg_dist_list.append(reg_dist)
S
shangliang Xu 已提交
223 224

        cls_score_list = paddle.concat(cls_score_list, axis=-1)
225 226 227 228 229
        if self.use_shared_conv:
            reg_dist_list = paddle.concat(reg_dist_list, axis=1)
        else:
            reg_dist_list = paddle.concat(reg_dist_list, axis=2)
            reg_dist_list = self.proj_conv(reg_dist_list).squeeze(1)
S
shangliang Xu 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

        return cls_score_list, reg_dist_list, anchor_points, stride_tensor

    def forward(self, feats, targets=None):
        assert len(feats) == len(self.fpn_strides), \
            "The size of feats is not equal to size of fpn_strides"

        if self.training:
            return self.forward_train(feats, targets)
        else:
            return self.forward_eval(feats)

    @staticmethod
    def _focal_loss(score, label, alpha=0.25, gamma=2.0):
        weight = (score - label).pow(gamma)
        if alpha > 0:
            alpha_t = alpha * label + (1 - alpha) * (1 - label)
            weight *= alpha_t
        loss = F.binary_cross_entropy(
            score, label, weight=weight, reduction='sum')
        return loss

    @staticmethod
    def _varifocal_loss(pred_score, gt_score, label, alpha=0.75, gamma=2.0):
        weight = alpha * pred_score.pow(gamma) * (1 - label) + gt_score * label
        loss = F.binary_cross_entropy(
            pred_score, gt_score, weight=weight, reduction='sum')
        return loss

    def _bbox_decode(self, anchor_points, pred_dist):
260
        _, l, _ = get_static_shape(pred_dist)
261
        pred_dist = F.softmax(pred_dist.reshape([-1, l, 4, self.reg_channels]))
262
        pred_dist = self.proj_conv(pred_dist.transpose([0, 3, 1, 2])).squeeze(1)
S
shangliang Xu 已提交
263 264 265 266 267 268
        return batch_distance2bbox(anchor_points, pred_dist)

    def _bbox2distance(self, points, bbox):
        x1y1, x2y2 = paddle.split(bbox, 2, -1)
        lt = points - x1y1
        rb = x2y2 - points
269 270
        return paddle.concat([lt, rb], -1).clip(self.reg_range[0],
                                                self.reg_range[1] - 1 - 0.01)
S
shangliang Xu 已提交
271

272 273
    def _df_loss(self, pred_dist, target, lower_bound=0):
        target_left = paddle.cast(target.floor(), 'int64')
S
shangliang Xu 已提交
274 275 276 277
        target_right = target_left + 1
        weight_left = target_right.astype('float32') - target
        weight_right = 1 - weight_left
        loss_left = F.cross_entropy(
278 279
            pred_dist, target_left - lower_bound,
            reduction='none') * weight_left
S
shangliang Xu 已提交
280
        loss_right = F.cross_entropy(
281 282
            pred_dist, target_right - lower_bound,
            reduction='none') * weight_right
S
shangliang Xu 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
        return (loss_left + loss_right).mean(-1, keepdim=True)

    def _bbox_loss(self, pred_dist, pred_bboxes, anchor_points, assigned_labels,
                   assigned_bboxes, assigned_scores, assigned_scores_sum):
        # select positive samples mask
        mask_positive = (assigned_labels != self.num_classes)
        num_pos = mask_positive.sum()
        # pos/neg loss
        if num_pos > 0:
            # l1 + iou
            bbox_mask = mask_positive.unsqueeze(-1).tile([1, 1, 4])
            pred_bboxes_pos = paddle.masked_select(pred_bboxes,
                                                   bbox_mask).reshape([-1, 4])
            assigned_bboxes_pos = paddle.masked_select(
                assigned_bboxes, bbox_mask).reshape([-1, 4])
            bbox_weight = paddle.masked_select(
                assigned_scores.sum(-1), mask_positive).unsqueeze(-1)

            loss_l1 = F.l1_loss(pred_bboxes_pos, assigned_bboxes_pos)

            loss_iou = self.iou_loss(pred_bboxes_pos,
                                     assigned_bboxes_pos) * bbox_weight
            loss_iou = loss_iou.sum() / assigned_scores_sum

            dist_mask = mask_positive.unsqueeze(-1).tile(
308
                [1, 1, self.reg_channels * 4])
S
shangliang Xu 已提交
309
            pred_dist_pos = paddle.masked_select(
310
                pred_dist, dist_mask).reshape([-1, 4, self.reg_channels])
S
shangliang Xu 已提交
311 312 313
            assigned_ltrb = self._bbox2distance(anchor_points, assigned_bboxes)
            assigned_ltrb_pos = paddle.masked_select(
                assigned_ltrb, bbox_mask).reshape([-1, 4])
314 315
            loss_dfl = self._df_loss(pred_dist_pos, assigned_ltrb_pos,
                                     self.reg_range[0]) * bbox_weight
S
shangliang Xu 已提交
316 317 318 319
            loss_dfl = loss_dfl.sum() / assigned_scores_sum
        else:
            loss_l1 = paddle.zeros([1])
            loss_iou = paddle.zeros([1])
320
            loss_dfl = pred_dist.sum() * 0.
S
shangliang Xu 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        return loss_l1, loss_iou, loss_dfl

    def get_loss(self, head_outs, gt_meta):
        pred_scores, pred_distri, anchors,\
        anchor_points, num_anchors_list, stride_tensor = head_outs

        anchor_points_s = anchor_points / stride_tensor
        pred_bboxes = self._bbox_decode(anchor_points_s, pred_distri)

        gt_labels = gt_meta['gt_class']
        gt_bboxes = gt_meta['gt_bbox']
        pad_gt_mask = gt_meta['pad_gt_mask']
        # label assignment
        if gt_meta['epoch_id'] < self.static_assigner_epoch:
            assigned_labels, assigned_bboxes, assigned_scores = \
                self.static_assigner(
                    anchors,
                    num_anchors_list,
                    gt_labels,
                    gt_bboxes,
                    pad_gt_mask,
                    bg_index=self.num_classes,
                    pred_bboxes=pred_bboxes.detach() * stride_tensor)
            alpha_l = 0.25
        else:
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
            if self.sm_use:
                assigned_labels, assigned_bboxes, assigned_scores = \
                    self.assigner(
                    pred_scores.detach(),
                    pred_bboxes.detach() * stride_tensor,
                    anchor_points,
                    stride_tensor,
                    gt_labels,
                    gt_bboxes,
                    pad_gt_mask,
                    bg_index=self.num_classes)
            else:
                assigned_labels, assigned_bboxes, assigned_scores = \
                    self.assigner(
                    pred_scores.detach(),
                    pred_bboxes.detach() * stride_tensor,
                    anchor_points,
                    num_anchors_list,
                    gt_labels,
                    gt_bboxes,
                    pad_gt_mask,
                    bg_index=self.num_classes)
S
shangliang Xu 已提交
368 369 370 371 372
            alpha_l = -1
        # rescale bbox
        assigned_bboxes /= stride_tensor
        # cls loss
        if self.use_varifocal_loss:
S
shangliang Xu 已提交
373 374
            one_hot_label = F.one_hot(assigned_labels,
                                      self.num_classes + 1)[..., :-1]
S
shangliang Xu 已提交
375 376 377
            loss_cls = self._varifocal_loss(pred_scores, assigned_scores,
                                            one_hot_label)
        else:
S
shangliang Xu 已提交
378
            loss_cls = self._focal_loss(pred_scores, assigned_scores, alpha_l)
S
shangliang Xu 已提交
379 380

        assigned_scores_sum = assigned_scores.sum()
W
wangguanzhong 已提交
381
        if paddle.distributed.get_world_size() > 1:
S
shangliang Xu 已提交
382
            paddle.distributed.all_reduce(assigned_scores_sum)
383 384
            assigned_scores_sum /= paddle.distributed.get_world_size()
        assigned_scores_sum = paddle.clip(assigned_scores_sum, min=1.)
S
shangliang Xu 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        loss_cls /= assigned_scores_sum

        loss_l1, loss_iou, loss_dfl = \
            self._bbox_loss(pred_distri, pred_bboxes, anchor_points_s,
                            assigned_labels, assigned_bboxes, assigned_scores,
                            assigned_scores_sum)
        loss = self.loss_weight['class'] * loss_cls + \
               self.loss_weight['iou'] * loss_iou + \
               self.loss_weight['dfl'] * loss_dfl
        out_dict = {
            'loss': loss,
            'loss_cls': loss_cls,
            'loss_iou': loss_iou,
            'loss_dfl': loss_dfl,
            'loss_l1': loss_l1,
        }
        return out_dict

S
shangliang Xu 已提交
403
    def post_process(self, head_outs, scale_factor):
S
shangliang Xu 已提交
404
        pred_scores, pred_dist, anchor_points, stride_tensor = head_outs
405
        pred_bboxes = batch_distance2bbox(anchor_points, pred_dist)
S
shangliang Xu 已提交
406
        pred_bboxes *= stride_tensor
407 408 409
        if self.exclude_post_process:
            return paddle.concat(
                [pred_bboxes, pred_scores.transpose([0, 2, 1])], axis=-1), None
S
shangliang Xu 已提交
410
        else:
411 412 413 414 415 416 417 418 419 420 421 422
            # scale bbox to origin
            scale_y, scale_x = paddle.split(scale_factor, 2, axis=-1)
            scale_factor = paddle.concat(
                [scale_x, scale_y, scale_x, scale_y],
                axis=-1).reshape([-1, 1, 4])
            pred_bboxes /= scale_factor
            if self.exclude_nms:
                # `exclude_nms=True` just use in benchmark
                return pred_bboxes, pred_scores
            else:
                bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
                return bbox_pred, bbox_num